Existing patient-derived xenograft (PDX) mouse models of solid tumors lack a fully tumor donor–matched, syngeneic, and functional immune system. We developed a model that overcomes these limitations by engrafting lymphopenic recipient mice with a fresh, undisrupted piece of solid tumor, whereby tumor-infiltrating lymphocytes (TILs) persisted in the recipient mice for several weeks. Successful tumor engraftment was achieved in 83% to 89% of TIL-PDX mice, and these were seen to harbor exhausted immuno-effector as well as functional immunoregulatory cells persisting for at least 6 months postengraftment. Combined treatment with interleukin-15 stimulation and immune checkpoint inhibition resulted in complete or partial tumor response in this model. Further, depletion of cytotoxic T lymphocytes and/or natural killer cells before combined immunotherapy revealed that both cell types were required for maximal tumor regression. Our TIL-PDX model provides a valuable resource for powerful mechanistic and therapeutic studies in solid tumors.
Duy Tri Le, Tridu R. Huynh, Bryan Burt, George Van Buren, Shawn A. Abeynaike, Cristina Zalfa, Rana Nikzad, Farrah Kheradmand, John J. Tyner, Silke Paust
NK cells and CTLs are required for successful combination immunotherapy in the TIL-PDX-LUAD model.