Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection
Tiphaine Parrot, … , Margaret Sällberg Chen, Johan K. Sandberg
Tiphaine Parrot, … , Margaret Sällberg Chen, Johan K. Sandberg
Published February 9, 2021
Citation Information: JCI Insight. 2021;6(5):e140074. https://doi.org/10.1172/jci.insight.140074.
View: Text | PDF
Resource and Technical Advance Immunology

Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection

  • Text
  • PDF
Abstract

Progress in our understanding of MR1-restricted mucosa-associated invariant T (MAIT) cells has raised interest in harnessing these cells for immunotherapy. The innate-like response characteristics, abundance in the blood, donor-unrestricted nature, and tropism for tissues make MAIT cells suitable candidates for adoptive cell transfer therapies. However, reliable methods and tools to utilize MAIT cells in such approaches are lacking. Here, we established methodology for efficient expansion of human MAIT cells in culture with high purity and yield, while preserving their functional response toward their natural ligand and increasing their cytotoxic potential. The cultured MAIT cells retained their effector memory characteristics without signs of terminal differentiation and expressed a more diverse set of chemokine receptors, potentially widening their already broad tissue tropism. To investigate the potential of MAIT cells in a context outside their main role in controlling bacterial infection, we engineered cultured MAIT cells with a new TCR specificity to mediate effective antiviral HLA class I–restricted effector function. In summary, we developed robust and effective methodology for the expansion of human MAIT cells with enhanced cytolytic capacity and for their engineering with a new specificity. These findings form a basis for the development of MAIT cells as a platform for adoptive immunotherapy.

Authors

Tiphaine Parrot, Katie Healy, Caroline Boulouis, Michał J. Sobkowiak, Edwin Leeansyah, Soo Aleman, Antonio Bertoletti, Margaret Sällberg Chen, Johan K. Sandberg

×

Figure 5

TCR transfection of expanded MAIT cells endows them with a new antiviral specificity.

Options: View larger image (or click on image) Download as PowerPoint
TCR transfection of expanded MAIT cells endows them with a new antiviral...
(A) HCV-specific TCR H4 (Vβ8.3) expression in CD8+ MAIT cells in 2 blood donors 18 hours following electroporation with or without mRNA encoding the TCR. (B) Representative FACS plot of cytokine responses of TCR-redirected MAIT cells following exposure to T2 target cells loaded with or without HCV NS3 1073 peptide. (C) TCR-transfected MAIT cell specific activity against HLA-A2+ Huh-7 HCVRep+ human hepatoma cells persistently replicating the HCV RNA replicon of genotype 1b Con1-ET assessed by suppression of luciferase activity (n = 2). (D) Pie charts describing the polyfunctionality and cytokine expression in HCV TCR–redirected MAIT cells in response to HCV NS3 peptide-pulsed T2 cells.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts