Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

The dynamics of human bone marrow adipose tissue in response to feeding and fasting
Pouneh K. Fazeli, Miriam A. Bredella, Gisela Pachon-Peña, Wenxiu Zhao, Xun Zhang, Alexander T. Faje, Megi Resulaj, Sai P. Polineni, Tara M. Holmes, Hang Lee, Elizabeth K. O’Donnell, Ormond A. MacDougald, Mark C. Horowitz, Clifford J. Rosen, Anne Klibanski
Pouneh K. Fazeli, Miriam A. Bredella, Gisela Pachon-Peña, Wenxiu Zhao, Xun Zhang, Alexander T. Faje, Megi Resulaj, Sai P. Polineni, Tara M. Holmes, Hang Lee, Elizabeth K. O’Donnell, Ormond A. MacDougald, Mark C. Horowitz, Clifford J. Rosen, Anne Klibanski
View: Text | PDF
Clinical Research and Public Health Metabolism

The dynamics of human bone marrow adipose tissue in response to feeding and fasting

  • Text
  • PDF
Abstract

BACKGROUND Adipocytes were long considered inert components of the bone marrow niche, but mouse and human models suggest bone marrow adipose tissue (BMAT) is dynamic and responsive to hormonal and nutrient cues.METHODS In this study of healthy volunteers, we investigated how BMAT responds to acute nutrient changes, including analyses of endocrine determinants and paracrine factors from marrow aspirates. Study participants underwent a 10-day high-calorie protocol, followed by a 10-day fast.RESULTS We demonstrate (a) vertebral BMAT increased significantly during high-calorie feeding and fasting, suggesting BMAT may have different functions in states of caloric excess compared with caloric deprivation; (b) ghrelin, which decreased in response to high-calorie feeding and fasting, was inversely associated with changes in BMAT; and (c) in response to high-calorie feeding, resistin levels in the marrow sera, but not the circulation, rose significantly. In addition, TNF-α expression in marrow adipocytes increased with high-calorie feeding and decreased upon fasting.CONCLUSION High-calorie feeding, but not fasting, induces an immune response in bone marrow similar to what has been reported in peripheral adipose tissue. Understanding the immunomodulatory regulators in the marrow may provide further insight into the homeostatic function of this unique adipose tissue depot.FUNDING NIH grant R24 DK084970, Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH, award UL 1TR002541), and NIH grants P30 DK040561 and U19 AG060917S1.

Authors

Pouneh K. Fazeli, Miriam A. Bredella, Gisela Pachon-Peña, Wenxiu Zhao, Xun Zhang, Alexander T. Faje, Megi Resulaj, Sai P. Polineni, Tara M. Holmes, Hang Lee, Elizabeth K. O’Donnell, Ormond A. MacDougald, Mark C. Horowitz, Clifford J. Rosen, Anne Klibanski

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,316 217
PDF 219 28
Figure 326 4
Table 275 0
Supplemental data 142 13
Citation downloads 117 0
Totals 2,395 262
Total Views 2,657
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts