Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
The dynamics of human bone marrow adipose tissue in response to feeding and fasting
Pouneh K. Fazeli, … , Clifford J. Rosen, Anne Klibanski
Pouneh K. Fazeli, … , Clifford J. Rosen, Anne Klibanski
Published May 11, 2021
Citation Information: JCI Insight. 2021;6(12):e138636. https://doi.org/10.1172/jci.insight.138636.
View: Text | PDF
Clinical Research and Public Health Metabolism

The dynamics of human bone marrow adipose tissue in response to feeding and fasting

  • Text
  • PDF
Abstract

BACKGROUND Adipocytes were long considered inert components of the bone marrow niche, but mouse and human models suggest bone marrow adipose tissue (BMAT) is dynamic and responsive to hormonal and nutrient cues.METHODS In this study of healthy volunteers, we investigated how BMAT responds to acute nutrient changes, including analyses of endocrine determinants and paracrine factors from marrow aspirates. Study participants underwent a 10-day high-calorie protocol, followed by a 10-day fast.RESULTS We demonstrate (a) vertebral BMAT increased significantly during high-calorie feeding and fasting, suggesting BMAT may have different functions in states of caloric excess compared with caloric deprivation; (b) ghrelin, which decreased in response to high-calorie feeding and fasting, was inversely associated with changes in BMAT; and (c) in response to high-calorie feeding, resistin levels in the marrow sera, but not the circulation, rose significantly. In addition, TNF-α expression in marrow adipocytes increased with high-calorie feeding and decreased upon fasting.CONCLUSION High-calorie feeding, but not fasting, induces an immune response in bone marrow similar to what has been reported in peripheral adipose tissue. Understanding the immunomodulatory regulators in the marrow may provide further insight into the homeostatic function of this unique adipose tissue depot.FUNDING NIH grant R24 DK084970, Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH, award UL 1TR002541), and NIH grants P30 DK040561 and U19 AG060917S1.

Authors

Pouneh K. Fazeli, Miriam A. Bredella, Gisela Pachon-Peña, Wenxiu Zhao, Xun Zhang, Alexander T. Faje, Megi Resulaj, Sai P. Polineni, Tara M. Holmes, Hang Lee, Elizabeth K. O’Donnell, Ormond A. MacDougald, Mark C. Horowitz, Clifford J. Rosen, Anne Klibanski

×
Options: View larger image (or click on image) Download as PowerPoint
Change in body composition and hormonal parameters during high-calorie v...

Change in body composition and hormonal parameters during high-calorie visit, fasting visit, and 2-week stabilization period between high-calorie and fasting visits


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts