Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Transfers
  • Current issue
  • Past issues
  • By specialty
  • Contact
  • Recently published
  • Technical Advances
  • Clinical Medicine
  • Editorials
  • Top read articles

Usage Information

Dectin-1 genetic deficiency predicts chronic lung allograft dysfunction and death
Daniel R. Calabrese, … , LTOG investigators, John R. Greenland
Daniel R. Calabrese, … , LTOG investigators, John R. Greenland
Published November 14, 2019; First published October 15, 2019
Citation Information: JCI Insight. 2019;4(22):e133083. https://doi.org/10.1172/jci.insight.133083.
View: Text | PDF
Categories: Clinical Medicine Immunology Transplantation

Dectin-1 genetic deficiency predicts chronic lung allograft dysfunction and death

  • Text
  • PDF
Abstract

BACKGROUND Innate immune activation impacts lung transplant outcomes. Dectin-1 is an innate receptor important for pathogen recognition. We hypothesized that genotypes reducing dectin-1 activity would be associated with infection, graft dysfunction, and death in lung transplant recipients.METHODS We assessed the rs16910526 CLEC7A gene polymorphism Y238X, which results in dectin-1 truncation, in 321 lung allograft recipients at a single institution and in 1,129 lung allograft recipients in the multicenter Lung Transplant Outcomes Group (LTOG) cohort. Differences in dectin-1 mRNA, cytokines, protein levels, immunophenotypes, and clinical factors were assessed.RESULTS Y238X carriers had decreased dectin-1 mRNA expression (P = 0.0001), decreased soluble dectin-1 protein concentrations in bronchoalveolar lavage (P = 0.008) and plasma (P = 0.04), and decreased monocyte surface dectin-1 (P = 0.01) compared with wild-type subjects. Y238X carriers had an increased risk of fungal pathogens (HR 1.17, CI 1.0–1.4), an increased risk of graft dysfunction or death (HR 1.6, CI 1.0–2.6), as well increased mortality in the UCSF cohort (HR 1.8, CI 1.1–3.8) and in the LTOG cohort (HR 1.3, CI 1.1–1.6), compared with wild-type CLEC7A subjects.CONCLUSION Increased rates of graft dysfunction and death associated with this dectin-1 polymorphism may be amplified by immunosuppression that drives higher fungal burden from compromised pathogen recognition.FUNDING The UCSF Nina Ireland Program for Lung Health Innovative Grant program, the Clinical Sciences Research & Development Service of the VA Office of Research and Development, and the Joel D. Cooper Career Development Award from the International Society for Heart and Lung Transplantation.

Authors

Daniel R. Calabrese, Ping Wang, Tiffany Chong, Jonathan Hoover, Jonathan P. Singer, Dara Torgerson, Steven R. Hays, Jeffrey A. Golden, Jasleen Kukreja, Daniel Dugger, Jason D. Christie, LTOG investigators, John R. Greenland

×

Usage data is cumulative from October 2019 through December 2019.

Usage JCI PMC
Text version 580 0
PDF 130 0
Figure 29 0
Table 4 0
Supplemental data 34 0
Citation downloads 7 0
Totals 784 0
Total Views 784

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI Insight:
Copyright © 2019 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts