Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Differential decay of intact and defective proviral DNA in HIV-1–infected individuals on suppressive antiretroviral therapy
Michael J. Peluso, Peter Bacchetti, Kristen D. Ritter, Subul Beg, Jun Lai, Jeffrey N. Martin, Peter W. Hunt, Timothy J. Henrich, Janet D. Siliciano, Robert F. Siliciano, Gregory M. Laird, Steven G. Deeks
Michael J. Peluso, Peter Bacchetti, Kristen D. Ritter, Subul Beg, Jun Lai, Jeffrey N. Martin, Peter W. Hunt, Timothy J. Henrich, Janet D. Siliciano, Robert F. Siliciano, Gregory M. Laird, Steven G. Deeks
View: Text | PDF
Clinical Research and Public Health AIDS/HIV

Differential decay of intact and defective proviral DNA in HIV-1–infected individuals on suppressive antiretroviral therapy

  • Text
  • PDF
Abstract

BACKGROUND The relative stabilities of the intact and defective HIV genomes over time during effective antiretroviral therapy (ART) have not been fully characterized.METHODS We used the intact proviral DNA assay (IPDA) to estimate the rate of change of intact and defective proviruses in HIV-infected adults on ART. We used linear spline models with a knot at seven years and a random intercept and slope up to the knot. We estimated the influence of covariates on rates of change.RESULTS We studied 81 individuals for a median of 7.3 (IQR 5.9-9.6) years. Intact genomes declined more rapidly from initial suppression through seven years (15.7% per year decline; 95% CI -22.8%, -8.0%) and more slowly after seven years (3.6% per year; 95% CI -8.1%, +1.1%). The estimated half-life of the reservoir was 4.0 years (95% CI 2.7-8.3) until year seven and 18.7 years (95% CI 8.2-infinite) thereafter. There was substantial variability between individuals in the rate of decline until year seven. Intact provirus declined more rapidly than defective provirus (P < 0.001) and showed a faster decline in individuals with higher CD4+ T cell nadirs.CONCLUSION The biology of the replication-competent (intact) reservoir differs from that of the replication-incompetent (non-intact) pool of proviruses. The IPDA will likely be informative when investigating the impact of interventions targeting the reservoir.FUNDING Delaney AIDS Research Enterprise, UCSF/Gladstone Institute of Virology & Immunology CFAR, CFAR Network of Integrated Systems, amfAR Institute for HIV Cure Research, I4C and Beat-HIV Collaboratories, Howard Hughes Medical Institute, Gilead Sciences, Bill and Melinda Gates Foundation.

Authors

Michael J. Peluso, Peter Bacchetti, Kristen D. Ritter, Subul Beg, Jun Lai, Jeffrey N. Martin, Peter W. Hunt, Timothy J. Henrich, Janet D. Siliciano, Robert F. Siliciano, Gregory M. Laird, Steven G. Deeks

×

Figure 3

Proviral decay rates in study participants.

Options: View larger image (or click on image) Download as PowerPoint
Proviral decay rates in study participants.
(A) Percent change per year ...
(A) Percent change per year in intact and defective provirus measured in study participants using IPDA. Note these slopes correspond to the first 7 years of virologic suppression. Values are estimated person-specific random slope from a mixed effects model plus the overall fixed-effect slope. (B) Intact proviral decay rate as a function of intact provirus at baseline. Note that intact provirus at baseline is the fitted random intercept plus the overall fixed-effect intercept, corresponding to the level at the start of viral suppression. (C) Intact proviral decay rate does not substantially correlate with 3′ provirus decay rate. (D) Intact proviral decay rate does not substantially correlate with 5′ provirus decay rate. Crossed circles indicate participants who did not exhibit decay of intact provirus over the first 7 years in longitudinal analyses.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts