Abstract

Circulating tumor cells (CTCs) provide easy, repeatable, and representative access to information regarding solid tumors. However, their detection remains difficult because of their paucity, their short half-life, and the lack of reliable surface biomarkers. Flow cytometry (FC) is a fast, sensitive, and affordable technique, ideal for rare-cell detection. Adapted to CTC detection (i.e., extremely rare cells), most FC-based techniques require a time-consuming pre-enrichment step, followed by a 2-hour staining procedure, impeding the efficiency of CTC detection. We overcame these caveats and reduced the procedure to less than 1 hour, with minimal manipulation. First, cells were simultaneously fixed, permeabilized, and then stained. Second, using low-speed FC acquisition conditions and 2 discriminators (cell size and pan-cytokeratin expression), we suppressed the pre-enrichment step. Applied to blood from donors with or without known malignant diseases, this protocol ensures a high recovery of the cells of interest independently of their epithelial-mesenchymal plasticity and can predict which samples are derived from cancer donors. This proof-of-concept study lays the bases of a sensitive tool to detect CTCs from a small amount of blood upstream of in-depth analyses.

Authors

Alexia Lopresti, Fabrice Malergue, François Bertucci, Maria Lucia Liberatoscioli, Severine Garnier, Quentin DaCosta, Pascal Finetti, Marine Gilabert, Jean Luc Raoul, Daniel Birnbaum, Claire Acquaviva, Emilie Mamessier

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement