Zebrafish are increasingly utilized to model cardiomyopathies and regeneration. Current methods evaluating cardiac function have known limitations, fail to reliably detect focal mechanics, and are not readily feasible in zebrafish. We developed a semiautomated, open-source method — displacement analysis of myocardial mechanical deformation (DIAMOND) — for quantitative assessment of 4D segmental cardiac function. We imaged transgenic embryonic zebrafish in vivo using a light-sheet fluorescence microscopy system with 4D cardiac motion synchronization. Our method permits the derivation of a transformation matrix to quantify the time-dependent 3D displacement of segmental myocardial mass centroids. Through treatment with doxorubicin, and by chemically and genetically manipulating the myocardial injury–activated Notch signaling pathway, we used DIAMOND to demonstrate that basal ventricular segments adjacent to the atrioventricular canal display the highest 3D displacement and are also the most susceptible to doxorubicin-induced injury. Thus, DIAMOND provides biomechanical insights into in vivo segmental cardiac function scalable to high-throughput research applications.
Junjie Chen, Yichen Ding, Michael Chen, Jonathan Gau, Nelson Jen, Chadi Nahal, Sally Tu, Cynthia Chen, Steve Zhou, Chih-Chiang Chang, Jintian Lyu, Xiaolei Xu, Tzung K. Hsiai, René R. Sevag Packard
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 315 | 80 |
42 | 33 | |
Figure | 101 | 6 |
Supplemental data | 90 | 1 |
Citation downloads | 37 | 0 |
Totals | 585 | 120 |
Total Views | 705 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.