Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients
HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam
HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam
View: Text | PDF
Resource and Technical Advance Ophthalmology

Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients

  • Text
  • PDF
Abstract

The heterogeneity of individual cells in a tissue has been well characterized, largely using ex vivo approaches that do not permit longitudinal assessments of the same tissue over long periods of time. We demonstrate a potentially novel application of adaptive optics fluorescence microscopy to visualize and track the in situ mosaicism of retinal pigment epithelial (RPE) cells directly in the human eye. After a short, dynamic period during which RPE cells take up i.v.-administered indocyanine green (ICG) dye, we observed a remarkably stable heterogeneity in the fluorescent pattern that gradually disappeared over a period of days. This pattern could be robustly reproduced with a new injection and follow-up imaging in the same eye out to at least 12 months, which enabled longitudinal tracking of RPE cells. Investigation of ICG uptake in primary human RPE cells and in a mouse model of ICG uptake alongside human imaging corroborated our findings that the observed mosaicism is an intrinsic property of the RPE tissue. We demonstrate a potentially novel application of fluorescence microscopy to detect subclinical changes to the RPE, a technical advance that has direct implications for improving our understanding of diseases such as oculocutaneous albinism, late-onset retinal degeneration, and Bietti crystalline dystrophy.

Authors

HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 534 51
PDF 119 25
Figure 258 0
Supplemental data 119 3
Citation downloads 104 0
Totals 1,134 79
Total Views 1,213
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts