Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients
HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam
HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam
View: Text | PDF
Resource and Technical Advance Ophthalmology

Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients

  • Text
  • PDF
Abstract

The heterogeneity of individual cells in a tissue has been well characterized, largely using ex vivo approaches that do not permit longitudinal assessments of the same tissue over long periods of time. We demonstrate a potentially novel application of adaptive optics fluorescence microscopy to visualize and track the in situ mosaicism of retinal pigment epithelial (RPE) cells directly in the human eye. After a short, dynamic period during which RPE cells take up i.v.-administered indocyanine green (ICG) dye, we observed a remarkably stable heterogeneity in the fluorescent pattern that gradually disappeared over a period of days. This pattern could be robustly reproduced with a new injection and follow-up imaging in the same eye out to at least 12 months, which enabled longitudinal tracking of RPE cells. Investigation of ICG uptake in primary human RPE cells and in a mouse model of ICG uptake alongside human imaging corroborated our findings that the observed mosaicism is an intrinsic property of the RPE tissue. We demonstrate a potentially novel application of fluorescence microscopy to detect subclinical changes to the RPE, a technical advance that has direct implications for improving our understanding of diseases such as oculocutaneous albinism, late-onset retinal degeneration, and Bietti crystalline dystrophy.

Authors

HaeWon Jung, Jianfei Liu, Tao Liu, Aman George, Margery G. Smelkinson, Sarah Cohen, Ruchi Sharma, Owen Schwartz, Arvydas Maminishkis, Kapil Bharti, Catherine Cukras, Laryssa A. Huryn, Brian P. Brooks, Robert Fariss, Johnny Tam

×

Figure 4

Long-term stability of the fluorescence pattern.

Options: View larger image (or click on image) Download as PowerPoint
Long-term stability of the fluorescence pattern.
Repeatability of AO-ICG...
Repeatability of AO-ICG signal in 10 eyes from 5 human subjects with a repeated injection (months afterward). All ROIs are 100 μm × 100 μm. Subject codes are shown to the left of each pair, along with the time interval between visits in months. The third column represents automatically detected changes in fluorescence (27) between image pairs, where red (solid circles) denote increases in fluorescence and blue (dotted circles) denote decreases. The overall pattern is conserved across visits for all time points, with over 97% of the areas tested remaining unchanged (16,495 pairs of RPE cells total across 10 eyes).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts