Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy
Rami Yossef, Eric Tran, Drew C. Deniger, Alena Gros, Anna Pasetto, Maria R. Parkhurst, Jared J. Gartner, Todd D. Prickett, Gal Cafri, Paul F. Robbins, Steven A. Rosenberg
Rami Yossef, Eric Tran, Drew C. Deniger, Alena Gros, Anna Pasetto, Maria R. Parkhurst, Jared J. Gartner, Todd D. Prickett, Gal Cafri, Paul F. Robbins, Steven A. Rosenberg
View: Text | PDF
Resource and Technical Advance Immunology

Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy

  • Text
  • PDF
Abstract

Adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILs) targeting neoantigens can mediate tumor regression in selected patients with metastatic epithelial cancer. However, effectively identifying and harnessing neoantigen-reactive T cells for patient treatment remains a challenge and it is unknown whether current methods to detect neoantigen-reactive T cells are missing potentially clinically relevant neoantigen reactivities. We thus investigated whether the detection of neoantigen-reactive TILs could be enhanced by enriching T cells that express PD-1 and/or T cell activation markers followed by microwell culturing to avoid overgrowth of nonreactive T cells. In 6 patients with metastatic epithelial cancer, this method led to the detection of CD4+ and CD8+ T cells targeting 18 and 1 neoantigens, respectively, compared with 6 and 2 neoantigens recognized by CD4+ and CD8+ T cells, respectively, when using our standard TIL fragment screening approach. In 2 patients, no recognition of mutated peptides was observed using our conventional screen, while our high-throughput approach led to the identification of 5 neoantigen-reactive T cell receptors (TCRs) against 5 different mutations from one patient and a highly potent MHC class II–restricted KRASG12V-reactive TCR from a second patient. In addition, in a metastatic tumor sample from a patient with serous ovarian cancer, we isolated 3 MHC class II–restricted TCRs targeting the TP53G245S hot-spot mutation. In conclusion, this approach provides a highly sensitive platform to isolate clinically relevant neoantigen-reactive T cells or their TCRs for cancer treatment.

Authors

Rami Yossef, Eric Tran, Drew C. Deniger, Alena Gros, Anna Pasetto, Maria R. Parkhurst, Jared J. Gartner, Todd D. Prickett, Gal Cafri, Paul F. Robbins, Steven A. Rosenberg

×

Figure 3

Rapid sequencing of neoantigen-reactive TCRs from Pt.4097.

Options: View larger image (or click on image) Download as PowerPoint
Rapid sequencing of neoantigen-reactive TCRs from Pt.4097.
(A and B) Poo...
(A and B) Pools of TIL cultures incubated with DCs pulsed with pooled peptide pools (PP), indicated by symbols. (A) Summary of TIL culture pools showing secretion of IFN-γ in ELISPOT. (B) Cells from ELISPOT coculture wells were collected, labeled, and single cells expressing T cell activation markers were sorted (as shown in the bottom right panel) into a 96-well PCR plate containing lysis buffer and PCR primers for TCRα and -β. (C) CDR3β of the sequenced culture well. Bolded are the origin of the reactive TCR, based on functional assays done with the individual cultures (data not shown). (D) Expanded cultures from the indicated TIL microwells coincubated with autologous DCs pulsed with single peptides from the pools that the cultures showed recognition against in previous experiments, representative of at least 2 independent experiments. ‘>’ denotes greater than 500 spots.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts