Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis
Mahmoud H. Abou Alaiwa, Jan L. Launspach, Brenda Grogan, Suzanne Carter, Joseph Zabner, David A. Stoltz, Pradeep K. Singh, Edward F. McKone, Michael J. Welsh
Mahmoud H. Abou Alaiwa, Jan L. Launspach, Brenda Grogan, Suzanne Carter, Joseph Zabner, David A. Stoltz, Pradeep K. Singh, Edward F. McKone, Michael J. Welsh
View: Text | PDF
Clinical Research and Public Health Pulmonology

Ivacaftor-induced sweat chloride reductions correlate with increases in airway surface liquid pH in cystic fibrosis

  • Text
  • PDF
Abstract

BACKGROUND. Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss of CFTR-mediated HCO3– secretion reduces the pH of airway surface liquid (ASL) in vitro and in neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH and also that increasing CFTR activity would correlate with increases in ASL pH. METHODS. To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured changes in sweat Cl– concentration immediately before and 48 hours after starting ivacaftor. RESULTS. Compared with that in the newborn period, ASL pH increased by 6 months of age. In people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; however reductions in sweat Cl– concentration correlated with elevations of ASL pH. Reductions in sweat Cl– concentration also correlated with improvements in pulmonary function. CONCLUSIONS. Our results suggest that CFTR-independent mechanisms increase ASL pH in people with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the adaptation. FUNDING. Vertex Inc., the NIH (P30DK089507, 1K08HL135433, HL091842, HL136813, K24HL102246), the Cystic Fibrosis Foundation (SINGH17A0 and SINGH15R0), and the Burroughs Wellcome Fund.

Authors

Mahmoud H. Abou Alaiwa, Jan L. Launspach, Brenda Grogan, Suzanne Carter, Joseph Zabner, David A. Stoltz, Pradeep K. Singh, Edward F. McKone, Michael J. Welsh

×

Loading citation information...
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts