Molecular targeted therapy heralded a new era for the treatment of patients with oncogene-driven advanced-stage non–small-cell lung cancer (NSCLC). Molecular testing at the time of diagnosis guides therapy selection, and targeted therapies in patients with activating mutations in EGFR, BRAF, and rearrangements in anaplastic lymphoma kinase (ALK) and ROS1 have become part of routine care. These therapies have extended the median survival from a mere few months to greater than 3 years for patients with stage 4 disease. However, despite the initial success, these treatments are eventually met with molecular resistance. Selective pressure leads to cellular adaption to maintain cancer growth, making resistance complex and the treatment challenging. This review focuses on recent advances in targeted therapy, mechanisms of resistance, and therapeutic strategies to overcome resistance in patients with lung cancer.
Suchita Pakkala, Suresh S. Ramalingam
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,537 | 195 |
174 | 87 | |
Figure | 218 | 13 |
Table | 46 | 0 |
Citation downloads | 98 | 0 |
Totals | 2,073 | 295 |
Total Views | 2,368 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.