Latest issue: August 18, 2016


Recently published

Abstract

The prevalence of fatty liver reaches alarming proportions. Fatty liver increases the risk for insulin resistance, cardiovascular disease, and nonalcoholic steatohepatitis (NASH). Although extensively studied in a preclinical setting, the lack of noninvasive methodologies hampers our understanding of which pathways promote hepatic fat accumulation in humans. Dietary fat retention is one of the pathways that may lead to fatty liver. The low (1.1%) natural abundance (NA) of carbon-13 (13C) allows use of 13C-enriched lipids for in vivo MR studies. Successful implementation of such methodology, however, is challenging due to low sensitivity of 13C-magnetic resonance spectroscopy (13C-MRS). Here, we investigated the use of 1-dimensional gradient enhanced heteronuclear single quantum coherence (ge-HSQC) spectroscopy for the in vivo detection of hepatic 1H-[13C]-lipid signals after a single high-fat meal with 13C-labeled fatty acids in 5 lean and 6 obese subjects. Postprandial retention of orally administered 13C-labeled fatty acids was significant (P < 0.01). Approximately 1.5% of the tracer was retained in the liver after 6 hours, and retention was similar in both groups (P = 0.92). Thus, a substantial part of the liver fat can originate directly from storage of meal-derived fat. The ge-HSQC can be used to noninvasively reveal the contribution of dietary fat to the development of hepatic steatosis over time.

Authors

Lucas Lindeboom, Robin A. de Graaf, Christine I. Nabuurs, Petronella A. van Ewijk, Matthijs K.C. Hesselink, Joachim E. Wildberger, Patrick Schrauwen, Vera B. Schrauwen-Hinderling

×

Abstract

Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions.

Authors

Arjun Saha, Susan Buntz, Paula Scotland, Li Xu, Pamela Noeldner, Sachit Patel, Amy Wollish, Aruni Gunaratne, Tracy Gentry, Jesse Troy, Glenn K. Matsushima, Joanne Kurtzberg, Andrew E. Balber

×

Abstract

Kidney fibrosis following kidney injury is an unresolved health problem and causes significant morbidity and mortality worldwide. In a study into its molecular mechanism, we identified essential causative features. Acute or chronic kidney injury causes sustained elevation of a disintegrin and metalloprotease 17 (ADAM17); of its cleavage-activated proligand substrates, in particular of pro-TNFα and the EGFR ligand amphiregulin (pro-AREG); and of the substrates’ receptors. As a consequence, EGFR is persistently activated and triggers the synthesis and release of proinflammatory and profibrotic factors, resulting in macrophage/neutrophil ingress and fibrosis. ADAM17 hypomorphic mice, specific ADAM17 inhibitor–treated WT mice, or mice with inducible KO of ADAM17 in proximal tubule (Slc34a1-Cre) were significantly protected against these effects. In vitro, in proximal tubule cells, we show that AREG has unique profibrotic actions that are potentiated by TNFα-induced AREG cleavage. In vivo, in acute kidney injury (AKI) and chronic kidney disease (CKD, fibrosis) patients, soluble AREG is indeed highly upregulated in human urine, and both ADAM17 and AREG expression show strong positive correlation with fibrosis markers in related kidney biopsies. Our results indicate that targeting of the ADAM17 pathway represents a therapeutic target for human kidney fibrosis.

Authors

Eirini Kefaloyianni, Muthu Lakshmi Muthu, Jakob Kaeppler, Xiaoming Sun, Venkata Sabbisetti, Athena Chalaris, Stefan Rose-John, Eitan Wong, Irit Sagi, Sushrut S. Waikar, Helmut Rennke, Benjamin D. Humphreys, Joseph V. Bonventre, Andreas Herrlich

×

Abstract

Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13–1.10 cm; on average, this depot is calculated to weigh 8.8 kg.

Authors

Ildiko Kasza, Diego Hernando, Alejandro Roldán-Alzate, Caroline M. Alexander, Scott B. Reeder

×

Abstract

Studies in rodents and newborn humans demonstrate the influence of brown adipose tissue (BAT) in temperature control and energy balance and a critical role in the regulation of body weight. Here, we obtained samples of epicardial adipose tissue (EAT) from neonates, infants, and children in order to evaluate changes in their transcriptional landscape by applying a systems biology approach. Surprisingly, these analyses revealed that the transition to infancy is a critical stage for changes in the morphology of EAT and is reflected in unique gene expression patterns of a substantial proportion of thermogenic gene transcripts (~10%). Our results also indicated that the pattern of gene expression represents a distinct developmental stage, even after the rebound in abundance of thermogenic genes in later childhood. Using weighted gene coexpression network analyses, we found precise anthropometric-specific correlations with changes in gene expression and the decline of thermogenic capacity within EAT. In addition, these results indicate a sequential order of transcriptional events affecting cellular pathways, which could potentially explain the variation in the amount, or activity, of BAT in adulthood. Together, these results provide a resource to elucidate gene regulatory mechanisms underlying the progressive development of BAT during early life.

Authors

Shalini Ojha, Hernan P. Fainberg, Victoria Wilson, Giuseppe Pelella, Marcos Castellanos, Sean T. May, Attilio A. Lotto, Harold Sacks, Michael E. Symonds, Helen Budge

×

Abstract

GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.

Authors

Joanna M. Peloquin, Gautam Goel, Lingjia Kong, Hailiang Huang, Talin Haritunians, R. Balfour Sartor, Mark J. Daly, Rodney D. Newberry, Dermot P. McGovern, Vijay Yajnik, Sergio A. Lira, Ramnik J. Xavier

×

Abstract

Regulation of lineage-restricted transcription factors has been shown to influence malignant transformation in several types of cancer. Whether similar mechanisms are involved in ovarian cancer pathogenesis is unknown. PAX8 is a nuclear transcription factor that controls the embryologic development of the Müllerian system, including the fallopian tubes. Recent studies have shown that fallopian tube secretory epithelial cells (FTSECs) give rise to the most common form of ovarian cancer, high-grade serous ovarian carcinomas (HGSOCs). We designed the present study in order to understand whether changes in gene expression between FTSECs and HGSOCs relate to alterations in PAX8 binding to chromatin. Using whole transcriptome shotgun sequencing (RNA-Seq) after PAX8 knockdown and ChIP-Seq, we show that FTSECs and HGSOCs are distinguished by marked reprogramming of the PAX8 cistrome. Genes that are significantly altered between FTSECs and HGSOCs are enriched near PAX8 binding sites. These sites are also near TEAD binding sites, and these transcriptional changes may be related to PAX8 interactions with the TEAD/YAP1 signaling pathway. These data suggest that transcriptional changes after transformation in ovarian cancer are closely related to epigenetic remodeling in lineage-specific transcription factors.

Authors

Kevin M. Elias, Megan M. Emori, Thomas Westerling, Henry Long, Anna Budina-Kolomets, Fugen Li, Emily MacDuffie, Michelle R. Davis, Alexander Holman, Brian Lawney, Matthew L. Freedman, John Quackenbush, Myles Brown, Ronny Drapkin

×

Abstract

Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

Authors

Eszter K. Vladar, Jayakar V. Nayak, Carlos E. Milla, Jeffrey D. Axelrod

×

Abstract

The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus–associated pregnancy complications.

Authors

Kellie Ann Jurado, Michael K. Simoni, Zhonghua Tang, Ryuta Uraki, Jesse Hwang, Sarah Householder, Mingjie Wu, Brett D. Lindenbach, Vikki M. Abrahams, Seth Guller, Erol Fikrig

×

Abstract

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by homozygous AIRE mutations. It classically presents with chronic mucocutaneous candidiasis and autoimmunity that primarily targets endocrine tissues; hypoparathyroidism and adrenal insufficiency are most common. Developing any two of these classic triad manifestations establishes the diagnosis. Although widely recognized in Europe, where nonendocrine autoimmune manifestations are uncommon, APECED is less defined in patients from the Western Hemisphere. We enrolled 35 consecutive American APECED patients (33 from the US) in a prospective observational natural history study and systematically examined their genetic, clinical, autoantibody, and immunological characteristics. Most patients were compound heterozygous; the most common AIRE mutation was c.967_979del13. All but one patient had anti–IFN-ω autoantibodies, including 4 of 5 patients without biallelic AIRE mutations. Urticarial eruption, hepatitis, gastritis, intestinal dysfunction, pneumonitis, and Sjögren’s-like syndrome, uncommon entities in European APECED cohorts, affected 40%–80% of American cases. Development of a classic diagnostic dyad was delayed at mean 7.38 years. Eighty percent of patients developed a median of 3 non-triad manifestations before a diagnostic dyad. Only 20% of patients had their first two manifestations among the classic triad. Urticarial eruption, intestinal dysfunction, and enamel hypoplasia were prominent among early manifestations. Patients exhibited expanded peripheral CD4+ T cells and CD21loCD38lo B lymphocytes. In summary, American APECED patients develop a diverse syndrome, with dramatic enrichment in organ-specific nonendocrine manifestations starting early in life, compared with European patients. Incorporation of these new manifestations into American diagnostic criteria would accelerate diagnosis by approximately 4 years and potentially prevent life-threatening endocrine complications.

Authors

Elise M.N. Ferre, Stacey R. Rose, Sergio D. Rosenzweig, Peter D. Burbelo, Kimberly R. Romito, Julie E. Niemela, Lindsey B. Rosen, Timothy J. Break, Wenjuan Gu, Sally Hunsberger, Sarah K. Browne, Amy P. Hsu, Shakuntala Rampertaap, Muthulekha Swamydas, Amanda L. Collar, Heidi H. Kong, Chyi-Chia Richard Lee, David Chascsa, Thomas Simcox, Angela Pham, Anamaria Bondici, Mukil Natarajan, Joseph Monsale, David E. Kleiner, Martha Quezado, Ilias Alevizos, Niki M. Moutsopoulos, Lynne Yockey, Cathleen Frein, Ariane Soldatos, Katherine R. Calvo, Jennifer Adjemian, Morgan N. Similuk, David M. Lang, Kelly D. Stone, Gulbu Uzel, Jeffrey B. Kopp, Rachel J. Bishop, Steven M. Holland, Kenneth N. Olivier, Thomas A. Fleisher, Theo Heller, Karen K. Winer, Michail S. Lionakis

×

Abstract

A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.

Authors

Anna Cline-Smith, Jesse Gibbs, Elena Shashkova, Zachary S. Buchwald, Rajeev Aurora

×

Advertisement

Open for submissions

JCI Insight is open for new submissions on our submission site.

Click here for more information about the journal and submitting your work.

About JCI Insight

The American Society for Clinical Investigation and Journal of Clinical Investigation are pleased to launch JCI Insight, a peer-reviewed journal dedicated to biomedical research, ranging from preclinical to clinical studies. Headed by Editor in Chief Howard Rockman, JCI Insight provides the research community with a broad forum to publish well-executed, high-quality, and insightful research articles across biomedical specialties.