Vargas-Blanco et al. demonstrate that inhibition of BTK in human neutrophils blocks key effector activities, including neutrophil swarming (shown in the images) against the fungal pathogen Aspergillus fumigatus, and that supplementation of TNF-α can restore antifungal activity. The cover art is a stylized version of neutrophil swarming toward A. fumigatus. Image created by Dr. Hannah Brown Harding.
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin–treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts “immune desert phenotypes” toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Lisa A. Ridnour, Robert Y.S. Cheng, Noemi Kedei, Veena Somasundaram, Dibyangana D. Bhattacharyya, Debashree Basudhar, Adelaide L. Wink, Abigail J. Walke, Caleb Kim, William F. Heinz, Elijah F. Edmondson, Donna O. Butcher, Andrew C. Warner, Tiffany H. Dorsey, Milind Pore, Robert J. Kinders, Stanley Lipkowitz, Richard J. Bryant, Jens Rittscher, Stephen T.C. Wong, Stephen M. Hewitt, Jenny C. Chang, Aliaa Shalaby, Grace M. Callagy, Sharon A. Glynn, Stefan Ambs, Stephen K. Anderson, Daniel W. McVicar, Stephen J. Lockett, David A. Wink
Influenza poses a persistent health burden worldwide. To design equitable vaccines effective across all demographics, it is essential to better understand how host factors such as genetic background and aging affect the single-cell immune landscape of influenza infection. Cytometry by time-of-flight (CyTOF) represents a promising technique in this pursuit, but interpreting its large, high-dimensional data remains difficult. We have developed a new analytical approach, in silico gating annotating training elucidating (iGATE), based on probabilistic support vector machine classification. By rapidly and accurately “gating” tens of millions of cells in silico into user-defined types, iGATE enabled us to track 25 canonical immune cell types in mouse lung over the course of influenza infection. Applying iGATE to study effects of host genetic background, we show that the lower survival of C57BL/6 mice compared with BALB/c was associated with a more rapid accumulation of inflammatory cell types and decreased IL-10 expression. Furthermore, we demonstrate that the most prominent effect of aging is a defective T cell response, reducing survival of aged mice. Finally, iGATE reveals that the 25 canonical immune cell types exhibited differential influenza infection susceptibility and replication permissiveness in vivo, but neither property varied with host genotype or aging. The software is available at https://github.com/UmichWenLab/iGATE.
Brett D. Hill, Andrew J. Zak, Sanjeev Raja, Luke F. Bugada, Syed M. Rizvi, Saiful B. Roslan, Hong Nhi Nguyen, Judy Chen, Hui Jiang, Akira Ono, Daniel R. Goldstein, Fei Wen
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Christopher O. Audu, Sonya J. Wolf, Amrita D. Joshi, Jadie Y. Moon, William J. Melvin, Sriganesh B. Sharma, Frank M. Davis, Andrea T. Obi, Rachel Wasikowski, Lam C. Tsoi, Emily C. Barrett, Kevin D. Mangum, Tyler M. Bauer, Steven L. Kunkel, Beth B. Moore, Katherine A. Gallagher
Our previous study identified 8 risk and 9 protective plasma miRNAs associated with progression to end-stage kidney disease (ESKD) in diabetes. This study aimed to elucidate preanalytical factors that influence the quantification of circulating miRNAs. Using the EdgeSeq platform, which quantifies 2,002 miRNAs in plasma, including ESKD-associated miRNAs, we compared miRNA profiles in whole plasma versus miRNA profiles in RNA extracted from the same plasma specimens. Less than half of the miRNAs were detected in standard RNA extraction from plasma. Detection of individual and concentrations of miRNAs were much lower when RNA extracted from plasma was quantified by RNA sequencing (RNA-Seq) or quantitative reverse transcription PCR (qRT-PCR) platforms compared with EdgeSeq. Plasma profiles of miRNAs determined by the EdgeSeq platform had excellent reproducibility in assessment and had no variation with age, sex, hemoglobin A1c, BMI, and cryostorage time. The risk ESKD-associated miRNAs were detected and measured accurately only in whole plasma and using the EdgeSeq platform. Protective ESKD-associated miRNAs were detected by all platforms except qRT-PCR; however, correlations among concentrations obtained with different platforms were weak or nonexistent. In conclusion, preanalytical factors have a profound effect on detection and quantification of circulating miRNAs in ESKD in diabetes. Quantification of miRNAs in whole plasma and using the EdgeSeq platform may be the preferable method to study profiles of circulating cell-free miRNAs associated with ESKD and possibly other diseases.
Eiichiro Satake, Bozena Krolewski, Hiroki Kobayashi, Zaipul I. Md Dom, Joseph Ricca, Jonathan M. Wilson, Dave S.B. Hoon, Kevin L. Duffin, Marcus G. Pezzolesi, Andrzej S. Krolewski
Patients with autosomal dominant polycystic kidney disease (ADPKD), a genetic disease due to mutations of the PKD1 or PKD2 gene, show signs of complement activation in the urine and cystic fluid, but their pathogenic role in cystogenesis is unclear. We tested the causal relationship between complement activation and cyst growth using a Pkd1KO renal tubular cell line and newly generated conditional Pkd1–/– C3–/– mice. Pkd1-deficient tubular cells have increased expression of complement-related genes (C3, C5, CfB, C3ar, and C5ar1), while the gene and protein expression of complement regulators DAF, CD59, and Crry is decreased. Pkd1–/– C3–/– mice are unable to fully activate the complement cascade and are characterized by a significantly slower kidney cystogenesis, preserved renal function, and reduced intrarenal inflammation compared with Pkd1–/– C3+/+ controls. Transgenic expression of the cytoplasmic C-terminal tail of Pkd1 in Pkd1KO cells lowered C5ar1 expression, restored Daf levels, and reduced cell proliferation. Consistently, both DAF overexpression and pharmacological inhibition of C5aR1 (but not C3aR) reduced Pkd1KO cell proliferation. In conclusion, the loss of Pkd1 promotes unleashed activation of locally produced complement by downregulating DAF expression in renal tubular cells. Increased C5a formation and C5aR1 activation in tubular cells promotes cyst growth, offering a new therapeutic target.
Sofia Bin, Miran Yoo, Paolo Molinari, Micaela Gentile, Kelly Budge, Chiara Cantarelli, Yaseen Khan, Gaetano La Manna, William M. Baldwin, Nina Dvorina, Paolo Cravedi, G. Luca Gusella
Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.
Yongjun Sui, Thomas J. Meyer, Christine M. Fennessey, Brandon F. Keele, Kimia Dadkhah, Chi Ma, Celia C. LaBranche, Matthew W. Breed, Josh A. Kramer, Jianping Li, Savannah E. Howe, Guido Ferrari, LaTonya D. Williams, Maggie Cam, Michael C. Kelly, Xiaoying Shen, Georgia D. Tomaras, David Montefiori, Tim F. Greten, Christopher J. Miller, Jay A. Berzofsky
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren’s syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR’s immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR–knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Liang Chen, Suresh Patil, Jeffrey Barbon, James Waire, Stephen Laroux, Donna McCarthy, Mishra Pratibha, Suju Zhong, Feng Dong, Karin Orsi, Gunarso Nguyen, Yingli Yang, Nancy Crosbie, Eric Dominguez, Arun Deora, Geertruida Veldman, Susan Westmoreland, Liang Jin, Timothy Radstake, Kevin White, Hsi-Ju Wei
Inhibition of Bruton’s tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the effect of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNF-α fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNF-α did not affect ROS production in healthy neutrophils but prevented exogenous TNF-α from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNF-α was independent of transcription. Moreover, the addition of TNF-α immediately rescued ROS production in IBT-treated neutrophils, indicating that TNF-α worked through a BTK-independent signaling pathway. Finally, TNF-α restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNF-α rescued the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.
Diego A. Vargas-Blanco, Olivia W. Hepworth, Kyle J. Basham, Patricia Simaku, Arianne J. Crossen, Kyle D. Timmer, Alex Hopke, Hannah Brown Harding, Steven R. Vandal, Kirstine N. Jensen, Daniel J. Floyd, Jennifer L. Reedy, Christopher Reardon, Michael K. Mansour, Rebecca A. Ward, Daniel Irimia, Jeremy S. Abramson, Jatin M. Vyas
Juvenile dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I IFN response and autoantibodies. Treatment options are limited due to an incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of patients with JDM at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment toward an immature naive state as a hallmark of JDM at diagnosis. Furthermore, we find that these changes in B cells are paralleled by T cell signatures suggestive of Th2-mediated inflammation that persist despite disease quiescence. We applied network analysis to reveal that hyperactivation of the type I IFN response in all immune populations is coordinated with previously masked cell states including dysfunctional protein processing in CD4+ T cells and regulation of cell death programming in NK cells, CD8+ T cells, and γδ T cells. Together, these findings unveil the coordinated immune dysregulation underpinning JDM and provide insight into strategies for restoring balance in immune function.
Gabrielle Rabadam, Camilla Wibrand, Emily Flynn, George C. Hartoularos, Yang Sun, Chioma Madubata, Gabriela K. Fragiadakis, Chun Jimmie Ye, Susan Kim, Zev J. Gartner, Marina Sirota, Jessica Neely
Diabetes increases the risk of both cardiovascular disease and kidney disease. Notably, most of the excess cardiovascular risk in people with diabetes is in those with kidney disease. Apolipoprotein C3 (APOC3) is a key regulator of plasma triglycerides, and it has recently been suggested to play a role in both type 1 diabetes–accelerated atherosclerosis and kidney disease progression. To investigate if APOC3 plays a role in kidney disease in people with type 2 diabetes, we analyzed plasma levels of APOC3 from the Veterans Affairs Diabetes Trial. Elevated baseline APOC3 levels predicted a greater loss of renal function. To mechanistically test if APOC3 plays a role in diabetic kidney disease and associated atherosclerosis, we treated black and tan, brachyury, WT and leptin-deficient (OB; diabetic) mice, a model of type 2 diabetes, with an antisense oligonucleotide (ASO) to APOC3 or a control ASO, all in the setting of human-like dyslipidemia. Silencing APOC3 prevented diabetes-augmented albuminuria, renal glomerular hypertrophy, monocyte recruitment, and macrophage accumulation, partly driven by reduced ICAM1 expression. Furthermore, reduced levels of APOC3 suppressed atherosclerosis associated with diabetes. This suggests that targeting APOC3 might benefit both diabetes-accelerated atherosclerosis and kidney disease.
Jocelyn Cervantes, Juraj Koska, Farah Kramer, Shreeram Akilesh, Charles E. Alpers, Adam E. Mullick, Peter Reaven, Jenny E. Kanter
Pathogenic variants in SCN8A, which encodes the voltage-gated sodium (NaV) channel NaV1.6, associate with neurodevelopmental disorders, including developmental and epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by use of a neonatally expressed, alternatively spliced isoform of NaV1.6 (NaV1.6N) and engineered mutations rendering the channel tetrodotoxin (TTX) resistant. We investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in 2 developmentally regulated splice isoforms (NaV1.6N, NaV1.6A). We employed automated patch clamp recording to enhance throughput, and developed a neuronal cell line (ND7/LoNav) with low levels of endogenous NaV current to obviate the need for TTX-resistance mutations. Expression of NaV1.6N or NaV1.6A in ND7/LoNav cells generated NaV currents with small, but significant, differences in voltage dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared with the corresponding WT channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Carlos G. Vanoye, Tatiana V. Abramova, Jean-Marc DeKeyser, Nora F. Ghabra, Madeleine J. Oudin, Christopher B. Burge, Ingo Helbig, Christopher H. Thompson, Alfred L. George Jr.
Background Glycogen storage disease type IV (GSD IV) is an ultrarare autosomal recessive disorder that causes deficiency of functional glycogen branching enzyme and formation of abnormally structured glycogen termed polyglucosan. GSD IV has traditionally been categorized based on primary hepatic or neuromuscular involvement, with hepatic GSD IV subclassified as discrete subtypes: classic (progressive) and nonprogressive.Methods To better understand the progression of liver disease in GSD IV, we present clinical and histopathology data from 23 patients from around the world and characterized the liver involvement in the Gbe1ys/ys knockin mouse model.Results We propose an alternative to the established subtype-based terminology for characterizing liver disease in GSD IV and recognize 3 tiers of disease severity: (i) “severe progressive” liver disease, (ii) “intermediate progressive” liver disease, and (iii) “attenuated” liver disease. Analysis of liver pathology revealed that risk for liver failure cannot be predicted from liver biopsy findings alone in individuals affected by GSD IV. Moreover, analysis of postmortem liver pathology from an individual who died over 40 years after being diagnosed with nonprogressive hepatic GSD IV in childhood verified that liver fibrosis did not regress. Last, characterization of the liver involvement in a mouse model known to recapitulate the adult-onset neurodegenerative form of GSD IV (Gbe1ys/ys mouse model) demonstrated hepatic disease.Conclusion Our findings challenge the established subtype-based view of GSD IV and suggest that liver disease severity among patients with GSD IV represents a disease continuum.Trial registration ClinicalTrials.gov NCT02683512Funding None
Rebecca L. Koch, Bridget T. Kiely, Su Jin Choi, William R. Jeck, Leticia S. Flores, Vikrant Sood, Seema Alam, Gilda Porta, Katy LaVecchio, Claudia Soler-Alfonso, Priya S. Kishnani
Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress–related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins’ physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.
Yaqiong Zhang, Aizhen Yang, Zhenzhen Zhao, Fengwu Chen, Xiaofeng Yan, Yue Han, Depei Wu, Yi Wu
Caloric restriction improves metabolic health but is often complicated by bone loss. We studied bone parameters in humans during a 10-day fast and identified candidate metabolic regulators of bone turnover. Pro-collagen 1 intact N-terminal pro-peptide (P1NP), a bone formation marker, decreased within 3 days of fasting. Whereas dual-energy x-ray absorptiometry measures of bone mineral density were unchanged after 10 days of fasting, high-resolution peripheral quantitative CT demonstrated remodeling of bone microarchitecture. Pathway analysis of longitudinal metabolomics data identified one-carbon metabolism as fasting dependent. In cultured osteoblasts, we tested the functional significance of one-carbon metabolites modulated by fasting, finding that methionine — which surged after 3 days of fasting — affected markers of osteoblast cell state in a concentration-dependent manner, in some instances exhibiting a U-shaped response with both low and high concentrations driving putative antibone responses. Administration of methionine to mice for 5 days recapitulated some fasting effects on bone, including a reduction in serum P1NP. In conclusion, a 10-day fast in humans led to remodeling of bone microarchitecture, potentially mediated by a surge in circulating methionine. These data support an emerging model that points to a window of optimal methionine exposure for bone health.
Tânia Amorim, Naveen G.V. Kumar, Natalie L. David, William Dion, Trishya Pagadala, Nandini K. Doshi, Bokai Zhu, Andrey Parkhitko, Matthew L. Steinhauser, Pouneh K. Fazeli
The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir–treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.
Chao Zhou, Shun Li, Na Qiu, Ping Sun, Milton H. Hamblin, C. Edward Dixon, Jun Chen, Ke-Jie Yin
The regulated glycosylation of the proteome has widespread effects on biological processes that cancer cells can exploit. Expression of N-acetylglucosaminyltransferase V (encoded by Mgat5 or GnT-V), which catalyzes the addition of β1,6-linked N-acetylglucosamine to form complex N-glycans, has been linked to tumor growth and metastasis across tumor types. Using a panel of murine pancreatic ductal adenocarcinoma (PDAC) clonal cell lines that recapitulate the immune heterogeneity of PDAC, we found that Mgat5 is required for tumor growth in vivo but not in vitro. Loss of Mgat5 results in tumor clearance that is dependent on T cells and dendritic cells, with NK cells playing an early role. Analysis of extrinsic cell death pathways revealed Mgat5-deficient cells have increased sensitivity to cell death mediated by the TNF superfamily, a property that was shared with other non-PDAC Mgat5-deficient cell lines. Finally, Mgat5 knockout in an immunotherapy-resistant PDAC line significantly decreased tumor growth and increased survival upon immune checkpoint blockade. These findings demonstrate a role for N-glycosylation in regulating the sensitivity of cancer cells to T cell killing through classical cell death pathways.
Erin E. Hollander, Rosemary E. Flock, Jayne C. McDevitt, William P. Vostrejs, Sydney L. Campbell, Margo I. Orlen, Samantha B. Kemp, Benjamin M. Kahn, Kathryn E. Wellen, Il-Kyu Kim, Ben Z. Stanger
The mechanisms responsible for the distribution and severity of joint involvement in rheumatoid arthritis (RA) are not known. To explore whether site-specific fibroblast-like synoviocyte (FLS) biology might be associated with location-specific synovitis and explain the predilection for hand (wrist/metacarpal phalangeal joints) involvement in RA, we generated transcriptomic and chromatin accessibility data from FLS to identify the transcription factors and pathways. Networks were constructed by integration of chromatin accessibility and gene expression data. Analysis revealed joint-specific patterns of FLS phenotype, with proliferative, migratory, proinflammatory, and matrix-degrading characteristics observed in resting FLS derived from the hand joints compared with hip or knee. TNF stimulation amplified these differences, with greater enrichment of proinflammatory and proliferative genes in hand FLS compared with hip and knee FLS. Hand FLS also had the greatest expression of markers associated with an “activated” state relative to the “resting” state, with the greatest cytokine and MMP expression in TNF-stimulated hand FLS. Predicted differences in proliferation and migration were biologically validated with hand FLS exhibiting greater migration and cell growth than hip or knee FLS. Distinctive joint-specific FLS biology associated with a more aggressive inflammatory response might contribute to the distribution and severity of joint involvement in RA.
Eunice Choi, Camilla R.L. Machado, Takaichi Okano, David Boyle, Wei Wang, Gary S. Firestein
Applying advanced molecular profiling together with highly specific targeted therapies offers the possibility to better dissect the mechanisms underlying immune-mediated inflammatory diseases such as systemic lupus erythematosus (SLE) in humans. Here we apply a combination of single-cell RNA-Seq and T/B cell repertoire analysis to perform an in-depth characterization of molecular changes in the immune-signature upon CD19 CAR T cell–mediated depletion of B cells in patients with SLE. The resulting data sets not only confirm a selective CAR T cell–mediated reset of the B cell response but simultaneously reveal consequent changes in the transcriptional signature of monocyte and T cell subsets that respond with a profound reduction in type I IFN signaling. Our current data, thus, provide evidence for a causal relationship between the B cell response and the increased IFN signature observed in SLE and additionally demonstrate the usefulness of combining targeted therapies and analytic approaches to decipher molecular mechanisms of immune-mediated inflammatory diseases in humans.
Artur Wilhelm, David Chambers, Fabian Müller, Aline Bozec, Ricardo Grieshaber-Bouyer, Thomas Winkler, Dimitrios Mougiakakos, Andreas Mackensen, Georg Schett, Gerhard Krönke
Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment (TME) that provides the selective pressure contributing to evolution in cancer. Despite high histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, the interactions between the genetically distinct GBM cells and the surrounding TME are not fully understood. To address this, we analyzed matched primary and recurrent GBM archival tumor tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, TERT promoter mutational status, and several oncogenic amplifications on the same slide and location. We found that the relationships between genetic and TME diversity are different in primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed the presence of the niche-specific macrophage populations and identified interactions between endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and spatial dependencies.
Ugoma Onubogu, Chandler D. Gatenbee, Sandhya Prabhakaran, Kelsey L. Wolfe, Benjamin Oakes, Roberto Salatino, Rachael Vaubel, Oszkar Szentirmai, Alexander R.A. Anderson, Michalina Janiszewska
Peripheral nerve injury–induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.
Huixing Wang, Wanhong Zuo, Xiaozhou Feng, Xiaodong Huo, Yingping Liang, Bing Wang, Dilip Sharma, Xiang Li, Bushra Yasin, Jiang-Hong Ye, Huijuan Hu, Yuan-Xiang Tao
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin–CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Sanja Novak, Hitoshi Tanigawa, Vijender Singh, Sierra H. Root, Tannin A. Schmidt, Kurt D. Hankenson, Ivo Kalajzic
Michelle Zuo, Naomi M. Fettig, Louis-Philippe Bernier, Elisabeth Pössnecker, Shoshana Spring, Annie Pu, Xianjie I. Ma, Dennis S.W. Lee, Lesley A. Ward, Anshu Sharma, Jens Kuhle, John G. Sled, Anne-Katrin Pröbstel, Brian A. MacVicar, Lisa C. Osborne, Jennifer L. Gommerman, Valeria Ramaglia
William Z. Zhang, Michelle C. Rice, Katherine L. Hoffman, Clara Oromendia, Igor Z. Barjaktarevic, J. Michael Wells, Annette T. Hastie, Wassim W. Labaki, Christopher B. Cooper, Alejandro P. Comellas, Gerard J. Criner, Jerry A. Krishnan, Robert Paine III, Nadia N. Hansel, Russell P. Bowler, R. Graham Barr, Stephen P. Peters, Prescott G. Woodruff, Jeffrey L. Curtis, Meilan K. Han, Karla V. Ballman, Fernando J. Martinez, Augustine M.K. Choi, Kiichi Nakahira, Suzanne M. Cloonan, Mary E. Choi, the SPIROMICS Investigators