Capicua (CIC), a member of the high mobility group (HMG)-box superfamily of transcriptional repressors, is frequently mutated in human oligodendrogliomas. But its function in brain development and tumorigenesis remains poorly understood. Here, we report that brain-specific deletion of Cic compromises developmental transition of neuroblast to immature neurons in mouse hippocampus and compromises normal neuronal differentiation. Combined gene expression and ChIP-seq analyses identified VGF as an important CIC-repressed transcriptional surrogate involved in neuronal lineage regulation. Aberrant VGF expression promotes neural progenitor cell proliferation by suppressing their differentiation. Mechanistically, we demonstrated that CIC represses VGF expression by tethering SIN3-HDAC to form a transcriptional corepressor complex. Mass spectrometry analysis of CIC-interacting proteins further identified BRG1 containing mSWI/SNF complex whose function is necessary for transcriptional repression by CIC. Together, this study uncovers a novel regulatory pathway of CIC-dependent neuronal differentiation and may implicate these molecular mechanisms in CIC-dependent brain tumorigenesis.
Inah Hwang, Heng Pan, Jun Yao, Olivier Elemento, Hongwu Zheng, Jihye Paik
Ischemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue. To test the therapeutic feasibility of human-induced pluripotent stem cell–derived endothelial cells (hiPSC-ECs) for the treatment of ischemic retinopathies, we compared the angiogenic potential of hiPSC-ECs with mature human retinal endothelial cells (HRECs) in response to hypoxia. hiPSC-ECs formed more robust and complex vascular networks in collagen gels, whereas HRECs displayed minimal sprouting. The cells were further tested in the mouse oxygen-induced retinopathy (OIR) model. Retinas with hiPSC-EC injection showed colocalization with host vessels, whereas HRECs lacked such responses. hiPSC-ECs markedly reduced vaso-obliteration and pathological neovascularization. This beneficial effect of hiPSC-ECs was explained by the stromal cell–derived factor-1a (SDF1a)/CXCR4 axis; hiPSC-ECs exhibited much higher cell-surface expression of CXCR4 than HRECs and greater chemotaxis toward SDF1a-embedded 3D collagen hydrogel. Furthermore, treatment with neutralizing antibody to CXCR4 abolished recruitment of hiPSCs in the OIR model. These findings suggest superior angiogenic potential of hiPSC-ECs under hypoxia and underscore the importance of SDF1a/CXCR4 in the reparative function of hiPSC-ECs in ischemic diseases.
Hongkwan Cho, Bria L. Macklin, Ying-Yu Lin, Lingli Zhou, Michael J. Lai, Grace Lee, Sharon Gerecht, Elia J. Duh
Lesch–Nyhan disease (LND) is a rare monogenic disease caused by deficiency of the salvage pathway enzyme hypoxanthine–guanine phosphoribosyltransferase (HGPRT) and is characterized by severe neuropsychiatric symptoms that currently cannot be treated. Predictive in vivo models are lacking for screening and evaluating candidate drugs because LND-associated neurological symptoms are not recapitulated in HGPRT-deficient animals. Here, we used human neural stem cells and neurons derived from induced pluripotent stem cells (iPSCs) of children affected by LND to identify neural phenotypes of interest associated with HGPRT deficiency to develop a target-agnostic-based drug screening system. We screened more than 3000 molecules and identified 6 pharmacological compounds, all possessing an adenosine moiety, that corrected HGPRT deficiency-associated neuronal phenotypes by promoting metabolism compensations in an HGPRT-independent manner. This included S-adenosylmethionine (SAM), a compound that had already been used as a compassionate approach to ease the neuropsychiatric symptoms in LND. Interestingly, these compounds compensate abnormal metabolism in a manner complementary to the gold standard allopurinol and can be provided to LND patients via simple food supplementation. This experimental paradigm can be easily adapted to other metabolic disorders affecting normal brain development and functioning in the absence of a relevant animal model.
Valentin Ruillier, Johana Tournois, Claire Boissart, Marie Lasbareilles, Gurvan Mahé, Laure Chatrousse, Michel Cailleret, Marc Peschanski, Alexandra Benchoua
The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by “Th2-high” biology.
Kristen M. Glisinski, Adam J. Schlobohm, Sarah V. Paramore, Anastasiya Birukova, M. Arthur Moseley, Matthew W. Foster, Christina E. Barkauskas
Massive tears of the rotator cuff (RC) are associated with chronic muscle degeneration due to fibrosis, fatty infiltration, and muscle atrophy. The microenvironment of diseased muscle often impairs efficient engraftment and regenerative activity of transplanted myogenic precursors. Accumulating myofibroblasts and fat cells disrupt the muscle stem cell niche and myogenic cell signaling and deposit excess disorganized connective tissue. Therefore, restoration of the damaged stromal niche with non–fibro-adipogenic cells is a prerequisite to successful repair of an injured RC. We generated from human embryonic stem cells (hES) a potentially novel subset of PDGFR-β+CD146+CD34–CD56– pericytes that lack expression of the fibro-adipogenic cell marker PDGFR-α. Accordingly, the PDGFR-β+PDGFR-α– phenotype typified non–fibro-adipogenic, non-myogenic, pericyte-like derivatives that maintained non–fibro-adipogenic properties when transplanted into chronically injured murine RCs. Although administered hES pericytes inhibited developing fibrosis at early and late stages of progressive muscle degeneration, transplanted PDGFR-β+PDGFR-α+ human muscle-derived fibro-adipogenic progenitors contributed to adipogenesis and greater fibrosis. Additionally, transplanted hES pericytes substantially attenuated muscle atrophy at all tested injection time points after injury. Coinciding with this observation, conditioned medium from cultured hES pericytes rescued atrophic myotubes in vitro. These findings imply that non–fibro-adipogenic hES pericytes recapitulate the myogenic stromal niche and may be used to improve cell-based treatments for chronic muscle disorders.
Gina M. Mosich, Regina Husman, Paras Shah, Abhinav Sharma, Kevin Ressadeh, Temidayo Aderibigbe, Vivian J. Hu, Daniel J. McClintick, Genbin Wu, Jonathan D. Gatto, Haibin Xi, April D. Pyle, Bruno Péault, Frank A. Petrigliano, Ayelet Dar
WHIM syndrome immunodeficiency is caused by autosomal dominant gain-of-function mutations in chemokine receptor CXCR4. Patient WHIM-09 was spontaneously cured by chromothriptic deletion of one copy of 164 genes, including the CXCR4WHIM allele, presumably in a single hematopoietic stem cell (HSC) that repopulated HSCs and the myeloid lineage. Testing the specific contribution of CXCR4 hemizygosity to her cure, we previously demonstrated enhanced engraftment of Cxcr4+/o HSCs after transplantation in WHIM (Cxcr4+/w) model mice, but the potency was not quantitated. We now report graded-dose competitive transplantation experiments using lethally irradiated Cxcr4+/+ recipients in which mixed BM cells containing ~5 Cxcr4+/o HSCs and a 100-fold excess of Cxcr4+/w HSCs achieved durable 50% Cxcr4+/o myeloid and B cell chimerism in blood and ~20% Cxcr4+/o HSC chimerism in BM. In Cxcr4+/o/Cxcr4+/w parabiotic mice, we observed 80-100% Cxcr4+/o myeloid and lymphoid chimerism in the blood and 15% Cxcr4+/o HSC chimerism in BM from the Cxcr4+/w parabiont, which was durable after separation from the Cxcr4+/o parabiont. Thus, CXCR4 haploinsufficiency likely significantly contributed to the selective repopulation of HSCs and the myeloid lineage from a single chromothriptic HSC in WHIM-09. Moreover, the results suggest that WHIM allele silencing of patient HSCs is a viable gene therapy strategy.
Ji-Liang Gao, Albert Owusu-Ansah, Andrea Paun, Kimberly Beacht, Erin Yim, Marie Siwicki, Alexander Yang, Qian Liu, David H. McDermott, Philip M. Murphy
Conventional treatments for inflammatory bowel disease (IBD) have multiple potential side effects. Therefore, alternative treatments are desperately needed. This work demonstrated that systemic administration of exosomes from human bone marrow-derived mesenchymal stromal cells (MSC-Exos) significantly mitigated colitis in various models of IBD. MSC-Exos treatment downregulated inflammatory responses, maintained intestinal barrier integrity and polarized M2b macrophages, but did not favor intestinal fibrosis. Mechanistically, infused MSC-Exos mainly acted on colonic macrophages and macrophages from colitic colons acquired obvious resistance to inflammatory re-stimulation when prepared from mice treated with MSC-Exos versus untreated mice. The beneficial effect of MSC-Exos was blocked by macrophage depletion. Besides, the induction of IL-10 production from macrophages was partially involved in the beneficial effect of MSC-Exos. MSC-Exos were enriched in proteins involved in regulating multiple biological processes associated with the anti-colitic benefit of MSC-Exos. Particularly, metallothionein-2 in MSC-Exos was required for the suppression of inflammatory responses. Taken together, MSC-Exos are critical regulators of inflammatory responses and may be promising candidates for IBD treatment.
Huashan Liu, Zhenxing Liang, Fengwei wang, Chi Zhou, Xiaobin Zheng, Tuo Hu, Xiaowen He, Xianrui Wu, Ping Lan
Retinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow–derived CD34+ cells and vascular wall–derived endothelial colony–forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants.
Sergio Li Calzi, Lynn C. Shaw, Leni Moldovan, William C. Shelley, Xiaoping Qi, Lyne Racette, Judith L. Quigley, Seth D. Fortmann, Michael E. Boulton, Mervin C. Yoder, Maria B. Grant
Mesenchymal stromal/stem cell (MSC) therapy has shown promise in experimental models of idiopathic pulmonary fibrosis (IPF). The aim of this study was to test the therapeutic effects of MSC-extracellular vesicles/exosomes (MEx) in a bleomycin-induced pulmonary fibrosis model and investigate putative mechanisms of action. Exosomes were isolated from media conditioned by human bone marrow MSCs. Adult mice (C57BL/6 strain) were challenged with endotracheal instillation of bleomycin and treated with MEx concurrently or for reversal models, at day 7 or 21. Experimental groups were assessed at day 7 and/or at day 14 or 28. Bleomycin-challenged mice presented with severe septal thickening and prominent fibrosis, and this was effectively prevented or reversed by a single dose of MEx. Furthermore, MEx therapy modulated whole lung macrophage phenotype and shifted the proportion of lung ‘proinflammatory’ classical monocytes, non-classical monocytes and alveolar macrophages to favor the monocyte/macrophage profiles of untreated-control mice. A parallel immunomodulatory effect was demonstrated in the bone marrow. Notably, transplantation of MEx-preconditioned bone marrow-derived monocytes alleviated core features of pulmonary fibrosis and lung inflammation. Proteomic analysis further revealed a signature enriched in non-inflammatory monocyte genes following MEx therapy supporting the immuno-regulatory, anti-inflammatory effect of MEx.We conclude that a bolus dose of MEx prevents and reverts core features of bleomycin-induced pulmonary fibrosis, and that the beneficial actions of MEx may be mediated via systemic modulation of monocyte phenotypes.
Nahal Mansouri, Gareth R. Willis, Angeles Fernandez-Gonzalez, Monica Reis, Sina Nassiri, Alex Mitsialis, Stella Kourembanas
The control of voluntary skeletal muscle contraction relies on action potentials, which send signals from the motor neuron through the neuromuscular junction (NMJ). Although dysfunction of the NMJ causes various neuromuscular diseases, a reliable in vitro system for disease modeling is currently unavailable. Here, we present a potentially novel 2-step, self-organizing approach for generating in vitro human NMJs from human induced pluripotent stem cells. Our simple and robust approach results in a complex NMJ structure that includes functional connectivity, recapitulating in vivo synapse formation. We used these in vitro NMJs to model the pathological features of spinal muscular atrophy, revealing the developmental and functional defects of NMJ formation and NMJ-dependent muscular contraction. Our differentiation system is therefore useful for investigating and understanding the physiology and pathology of human NMJs.
Chuang-Yu Lin, Michiko Yoshida, Li-Tzu Li, Akihiro Ikenaka, Shiori Oshima, Kazuhiro Nakagawa, Hidetoshi Sakurai, Eriko Matsui, Tatsutoshi Nakahata, Megumu K. Saito
No posts were found with this tag.