Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Oncology

  • 424 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 40
  • 41
  • 42
  • 43
  • Next →
The head and neck cancer immune landscape and its immunotherapeutic implications
Rajarsi Mandal, … , Timothy A. Chan, Luc G.T. Morris
Rajarsi Mandal, … , Timothy A. Chan, Luc G.T. Morris
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89829. https://doi.org/10.1172/jci.insight.89829.
View: Text | PDF

The head and neck cancer immune landscape and its immunotherapeutic implications

  • Text
  • PDF
Abstract

Recent clinical trials have demonstrated a clear survival advantage in advanced head and neck squamous cell carcinoma (HNSCC) patients treated with immune checkpoint blockade. These emerging results reveal that HNSCC is one of the most promising frontiers for immunotherapy research. However, further progress in head and neck immuno-oncology will require a detailed understanding of the immune infiltrative landscape found in these tumors. We leveraged transcriptome data from 280 tumors profiled by The Cancer Genome Atlas (TCGA) to comprehensively characterize the immune landscape of HNSCC in order to develop a rationale for immunotherapeutic strategies in HNSCC and guide clinical investigation. We find that both HPV+ and HPV– HNSCC tumors are among the most highly immune-infiltrated cancer types. Strikingly, HNSCC had the highest median Treg/CD8+ T cell ratio and the highest levels of CD56dim NK cell infiltration, in our pan-cancer analysis of the most immune-infiltrated tumors. CD8+ T cell infiltration and CD56dim NK cell infiltration each correlated with superior survival in HNSCC. Tumors harboring genetic smoking signatures had lower immune infiltration and were associated with poorer survival, suggesting these patients may benefit from immune agonist therapy. These findings illuminate the immune landscape of HPV+ and HPV– HNSCC. Additionally, this landscape provides a potentially novel rationale for investigation of agents targeting modulators of Tregs (e.g., CTLA-4, GITR, ICOS, IDO, and VEGFA) and NK cells (e.g., KIR, TIGIT, and 4-1BB) as adjuncts to anti–PD-1 in the treatment of advanced HNSCC.

Authors

Rajarsi Mandal, Yasin Şenbabaoğlu, Alexis Desrichard, Jonathan J. Havel, Martin G. Dalin, Nadeem Riaz, Ken-Wing Lee, Ian Ganly, A. Ari Hakimi, Timothy A. Chan, Luc G.T. Morris

×

Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis
Wenjin Liu, … , Satish Gopal, Norman E. Sharpless
Wenjin Liu, … , Satish Gopal, Norman E. Sharpless
Published October 6, 2016
Citation Information: JCI Insight. 2016;1(16):e88755. https://doi.org/10.1172/jci.insight.88755.
View: Text | PDF | Addendum

Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis

  • Text
  • PDF
Abstract

Esophageal squamous cell carcinoma (ESCC) is endemic in regions of sub-Saharan Africa (SSA), where it is the third most common cancer. Here, we describe whole-exome tumor/normal sequencing and RNA transcriptomic analysis of 59 patients with ESCC in Malawi. We observed similar genetic aberrations as reported in Asian and North American cohorts, including mutations of TP53, CDKN2A, NFE2L2, CHEK2, NOTCH1, FAT1, and FBXW7. Analyses for nonhuman sequences did not reveal evidence for infection with HPV or other occult pathogens. Mutational signature analysis revealed common signatures associated with aging, cytidine deaminase activity (APOBEC), and a third signature of unknown origin, but signatures of inhaled tobacco use, aflatoxin and mismatch repair were notably absent. Based on RNA expression analysis, ESCC could be divided into 3 distinct subtypes, which were distinguished by their expression of cell cycle and neural transcripts. This study demonstrates discrete subtypes of ESCC in SSA, and suggests that the endemic nature of this disease reflects exposure to a carcinogen other than tobacco and oncogenic viruses.

Authors

Wenjin Liu, Jeff M. Snell, William R. Jeck, Katherine A. Hoadley, Matthew D. Wilkerson, Joel S. Parker, Nirali Patel, Yohannie B. Mlombe, Gift Mulima, N. George Liomba, Lindsey L. Wolf, Carol G. Shores, Satish Gopal, Norman E. Sharpless

×

Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin
Sarah A. Comerford, … , Gail E. Tomlinson, Robert E. Hammer
Sarah A. Comerford, … , Gail E. Tomlinson, Robert E. Hammer
Published October 6, 2016
Citation Information: JCI Insight. 2016;1(16):e88549. https://doi.org/10.1172/jci.insight.88549.
View: Text | PDF

Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin

  • Text
  • PDF
Abstract

Aberrant wnt/β-catenin signaling and amplification/overexpression of Myc are associated with hepatoblastoma (HB), the most prevalent type of childhood liver cancer. To address their roles in the pathogenesis of HB, we generated mice in which Myc and mutant β-catenin were targeted to immature cells of the developing mouse liver. Perinatal coexpression of both genes promoted the preferential development of HBs over other tumor types in neonatal mice, all of which bore striking resemblance to their human counterparts. Integrated analysis indicated that tumors emerged as a consequence of Myc-driven alterations in hepatoblast fate in a background of pan-hepatic injury, inflammation, and nuclear factor (erythroid-derived 2)-like 2/Nrf2-dependent antioxidant signaling, which was specifically associated with expression of mutant β-catenin but not Myc. Immunoprofiling of human HBs confirmed that approximately 50% of tumors demonstrated aberrant activation of either Myc or Nfe2l2/Nrf2, while knockdown of Nrf2 in a cell line–derived from a human HB with NFE2L2 gene amplification reduced tumor cell growth and viability. Taken together, these data indicate that β-catenin creates a protumorigenic hepatic environment in part by indirectly activating Nrf2 and implicate oxidative stress as a possible driving force for a subset of β-catenin–driven liver tumors in children.

Authors

Sarah A. Comerford, Elizabeth A. Hinnant, Yidong Chen, Hima Bansal, Shawn Klapproth, Dinesh Rakheja, Milton J. Finegold, Dolores Lopez-Terrada, Kathryn A. O’Donnell, Gail E. Tomlinson, Robert E. Hammer

×

Lack of immunoediting in murine pancreatic cancer reversed with neoantigen
Rebecca A. Evans, … , Rafael Winograd, Robert H. Vonderheide
Rebecca A. Evans, … , Rafael Winograd, Robert H. Vonderheide
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e88328. https://doi.org/10.1172/jci.insight.88328.
View: Text | PDF

Lack of immunoediting in murine pancreatic cancer reversed with neoantigen

  • Text
  • PDF
Abstract

In carcinogen-driven cancers, a high mutational burden results in neoepitopes that can be recognized immunologically. Such carcinogen-induced tumors may evade this immune response through “immunoediting,” whereby tumors adapt to immune pressure and escape T cell–mediated killing. Many tumors lack a high neoepitope burden, and it remains unclear whether immunoediting occurs in such cases. Here, we evaluated T cell immunity in an autochthonous mouse model of pancreatic cancer and found a low mutational burden, absence of predicted neoepitopes derived from tumor mutations, and resistance to checkpoint immunotherapy. Spontaneous tumor progression was identical in the presence or absence of T cells. Moreover, tumors arising in T cell–depleted mice grew unchecked in immune-competent hosts. However, introduction of the neoantigen ovalbumin (OVA) led to tumor rejection and T cell memory, but this did not occur in OVA immune-tolerant mice. Thus, immunoediting does not occur in this mouse model — a likely consequence, not a cause, of absent neoepitopes. Because many human tumors also have a low missense mutational load and minimal neoepitope burden, our findings have clinical implications for the design of immunotherapy for patients with such tumors.

Authors

Rebecca A. Evans, Mark S. Diamond, Andrew J. Rech, Timothy Chao, Max W. Richardson, Jeffrey H. Lin, David L. Bajor, Katelyn T. Byrne, Ben Z. Stanger, James L. Riley, Nune Markosyan, Rafael Winograd, Robert H. Vonderheide

×

Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell–derived ADAM9
Elmina Mammadova-Bach, … , Christian Gachet, Pierre Henri Mangin
Elmina Mammadova-Bach, … , Christian Gachet, Pierre Henri Mangin
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e88245. https://doi.org/10.1172/jci.insight.88245.
View: Text | PDF

Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell–derived ADAM9

  • Text
  • PDF
Abstract

Metastatic dissemination of cancer cells, which accounts for 90% of cancer mortality, is the ultimate hallmark of malignancy. Growing evidence suggests that blood platelets have a predominant role in tumor metastasis; however, the molecular mechanisms involved remain elusive. Here, we demonstrate that genetic deficiency of integrin α6β1 on platelets markedly decreases experimental and spontaneous lung metastasis. In vitro and in vivo assays reveal that human and mouse platelet α6β1 supports platelet adhesion to various types of cancer cells. Using a knockdown approach, we identified ADAM9 as the major counter receptor of α6β1 on both human and mouse tumor cells. Static and flow-based adhesion assays of platelets binding to DC-9, a recombinant protein covering the disintegrin-cysteine domain of ADAM9, demonstrated that this receptor directly binds to platelet α6β1. In vivo studies showed that the interplay between platelet α6β1 and tumor cell–expressed ADAM9 promotes efficient lung metastasis. The integrin α6β1–dependent platelet-tumor cell interaction induces platelet activation and favors the extravasation process of tumor cells. Finally, we demonstrate that a pharmacological approach targeting α6β1 efficiently impairs tumor metastasis through a platelet-dependent mechanism. Our study reveals a mechanism by which platelets promote tumor metastasis and suggests that integrin α6β1 represents a promising target for antimetastatic therapies.

Authors

Elmina Mammadova-Bach, Paola Zigrino, Camille Brucker, Catherine Bourdon, Monique Freund, Adèle De Arcangelis, Scott I. Abrams, Gertaud Orend, Christian Gachet, Pierre Henri Mangin

×

Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors
Kevin M. Elias, … , Myles Brown, Ronny Drapkin
Kevin M. Elias, … , Myles Brown, Ronny Drapkin
Published August 18, 2016
Citation Information: JCI Insight. 2016;1(13):e87988. https://doi.org/10.1172/jci.insight.87988.
View: Text | PDF

Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors

  • Text
  • PDF
Abstract

Regulation of lineage-restricted transcription factors has been shown to influence malignant transformation in several types of cancer. Whether similar mechanisms are involved in ovarian cancer pathogenesis is unknown. PAX8 is a nuclear transcription factor that controls the embryologic development of the Müllerian system, including the fallopian tubes. Recent studies have shown that fallopian tube secretory epithelial cells (FTSECs) give rise to the most common form of ovarian cancer, high-grade serous ovarian carcinomas (HGSOCs). We designed the present study in order to understand whether changes in gene expression between FTSECs and HGSOCs relate to alterations in PAX8 binding to chromatin. Using whole transcriptome shotgun sequencing (RNA-Seq) after PAX8 knockdown and ChIP-Seq, we show that FTSECs and HGSOCs are distinguished by marked reprogramming of the PAX8 cistrome. Genes that are significantly altered between FTSECs and HGSOCs are enriched near PAX8 binding sites. These sites are also near TEAD binding sites, and these transcriptional changes may be related to PAX8 interactions with the TEAD/YAP1 signaling pathway. These data suggest that transcriptional changes after transformation in ovarian cancer are closely related to epigenetic remodeling in lineage-specific transcription factors.

Authors

Kevin M. Elias, Megan M. Emori, Thomas Westerling, Henry Long, Anna Budina-Kolomets, Fugen Li, Emily MacDuffie, Michelle R. Davis, Alexander Holman, Brian Lawney, Matthew L. Freedman, John Quackenbush, Myles Brown, Ronny Drapkin

×

An imaging agent to detect androgen receptor and its active splice variants in prostate cancer
Yusuke Imamura, … , Raymond J. Andersen, Marianne D. Sadar
Yusuke Imamura, … , Raymond J. Andersen, Marianne D. Sadar
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87850. https://doi.org/10.1172/jci.insight.87850.
View: Text | PDF

An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

  • Text
  • PDF
Abstract

Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC.

Authors

Yusuke Imamura, Amy H. Tien, Jinhe Pan, Jacky K. Leung, Carmen A. Banuelos, Kunzhong Jian, Jun Wang, Nasrin R. Mawji, Javier Garcia Fernandez, Kuo-Shyan Lin, Raymond J. Andersen, Marianne D. Sadar

×

PD-1+ and Foxp3+ T cell reduction correlates with survival of HCC patients after sorafenib therapy
Suresh Gopi Kalathil, … , Renuka Iyer, Yasmin Thanavala
Suresh Gopi Kalathil, … , Renuka Iyer, Yasmin Thanavala
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e86182. https://doi.org/10.1172/jci.insight.86182.
View: Text | PDF

PD-1+ and Foxp3+ T cell reduction correlates with survival of HCC patients after sorafenib therapy

  • Text
  • PDF
Abstract

BACKGROUND. Sorafenib is an oral antiangiogenic agent administered in advanced-stage hepatocellular carcinoma (HCC). Based on preclinical and human studies, we hypothesized that, in addition to its antiangiogenic properties, sorafenib may beneficially reduce the extent of the immunosuppressive network in HCC patients. To test this hypothesis, we examined whether alterations in the immunosuppressive burden of advanced-stage HCC patients correlated with clinical outcome.

METHODS. In before and after sorafenib treatment, blood samples collected from 19 patients with advanced HCC, the frequency of PD-1+ T cells, Tregs, and myeloid derived suppressor cells (MDSC) were quantified by multiparameter FACS. Cytokine levels in plasma were determined by ELISA.

RESULTS. Overall survival (OS) was significantly impacted by the reduction in the absolute number of both CD4+PD-1+ T cells and CD8+PD-1+ T cells following sorafenib treatment. Significant decreases in the frequency and absolute number of Foxp3+ Tregs were also observed, and a statistically significant improvement in OS was noted in patients exhibiting a greater decrease in the number of Foxp3+ Tregs. The ratio of CD4+CD127+PD-1– T effector cells to CD4+Foxp3+PD-1+ Tregs was significantly increased following treatment with sorafenib. Increased frequency of CD4+CD127+ T effector cells in the posttreatment samples significantly correlated with OS.

CONCLUSION. This study is the first to our knowledge to demonstrate the potent immunomodulatory effects of sorafenib therapy on PD-1+ T cells and Tregs and the ensuing correlation with survival. These phenotypes could serve as predictive biomarkers to identify HCC patients who are likely to benefit from sorafenib treatment.

TRIAL REGISTRATION. Registration is not required for observational studies.

FUNDING. This study was supported by NCI Core Grant to RPCI (NIH P30 CA016056) and discretionary funds to Y. Thanavala.

Authors

Suresh Gopi Kalathil, Amit Anand Lugade, Austin Miller, Renuka Iyer, Yasmin Thanavala

×

Deep sequencing reveals microRNAs predictive of antiangiogenic drug response
Jesús García-Donas, … , Mercedes Robledo, Cristina Rodriguez-Antona
Jesús García-Donas, … , Mercedes Robledo, Cristina Rodriguez-Antona
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86051. https://doi.org/10.1172/jci.insight.86051.
View: Text | PDF

Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

  • Text
  • PDF
Abstract

The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10–9 to 3 × 10–3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10–3, 6.5 × 10–3, and 3.4 × 10–2, respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10–4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10–8 and 7.8 × 10–7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment.

Authors

Jesús García-Donas, Benoit Beuselinck, Lucía Inglada-Pérez, Osvaldo Graña, Patrick Schöffski, Agnieszka Wozniak, Oliver Bechter, Maria Apellániz-Ruiz, Luis Javier Leandro-García, Emilio Esteban, Daniel E. Castellano, Aranzazu González del Alba, Miguel Angel Climent, Susana Hernando, José Angel Arranz, Manuel Morente, David G. Pisano, Mercedes Robledo, Cristina Rodriguez-Antona

×

An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer
Everett J. Moding, … , Chang-Lung Lee, David G. Kirsch
Everett J. Moding, … , Chang-Lung Lee, David G. Kirsch
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86698. https://doi.org/10.1172/jci.insight.86698.
View: Text | PDF

An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer

  • Text
  • PDF
Abstract

The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 KrasG12D mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing KrasG12D, in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote KrasG12D mutant lung cancer.

Authors

Everett J. Moding, Hooney D. Min, Katherine D. Castle, Moiez Ali, Loretta Woodlief, Nerissa Williams, Yan Ma, Yongbaek Kim, Chang-Lung Lee, David G. Kirsch

×
  • ← Previous
  • 1
  • 2
  • …
  • 40
  • 41
  • 42
  • 43
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts