Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Recently published
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Recently published
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Oncology

  • 286 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →
Deep sequencing reveals microRNAs predictive of antiangiogenic drug response
Jesús García-Donas, … , Mercedes Robledo, Cristina Rodriguez-Antona
Jesús García-Donas, … , Mercedes Robledo, Cristina Rodriguez-Antona
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86051. https://doi.org/10.1172/jci.insight.86051.
View: Text | PDF

Deep sequencing reveals microRNAs predictive of antiangiogenic drug response

  • Text
  • PDF
Abstract

The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10–9 to 3 × 10–3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR–1307-3p, miR–155-5p, and miR–221-3p (P = 4.6 × 10–3, 6.5 × 10–3, and 3.4 × 10–2, respectively). Furthermore, a 2 miRNA–based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64–0.85; P = 1.3 × 10–4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10–8 and 7.8 × 10–7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment.

Authors

Jesús García-Donas, Benoit Beuselinck, Lucía Inglada-Pérez, Osvaldo Graña, Patrick Schöffski, Agnieszka Wozniak, Oliver Bechter, Maria Apellániz-Ruiz, Luis Javier Leandro-García, Emilio Esteban, Daniel E. Castellano, Aranzazu González del Alba, Miguel Angel Climent, Susana Hernando, José Angel Arranz, Manuel Morente, David G. Pisano, Mercedes Robledo, Cristina Rodriguez-Antona

×

An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer
Everett J. Moding, … , Chang-Lung Lee, David G. Kirsch
Everett J. Moding, … , Chang-Lung Lee, David G. Kirsch
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86698. https://doi.org/10.1172/jci.insight.86698.
View: Text | PDF

An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer

  • Text
  • PDF
Abstract

The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in LA-1 KrasG12D mice with wild-type p53 or an extra copy of p53 (super p53) exposed to fractionated total body irradiation with low linear energy transfer (low-LET) X-rays or high-LET iron ions and compared tumor formation in these mice with unirradiated controls. We found that an additional copy of p53 suppressed both Kras-driven lung tumor and lymphoma development in the absence of radiation. However, an additional copy of p53 did not affect lymphoma development following low- or high-LET radiation exposure and was unable to suppress radiation-induced expansion of thymocytes with mutated Kras. Moreover, radiation exposure increased lung tumor size in super p53 but not wild-type p53 mice. These results demonstrate that although p53 suppresses the development of spontaneous tumors expressing KrasG12D, in the context of exposure to ionizing radiation, an extra copy of p53 does not protect against radiation-induced lymphoma and may promote KrasG12D mutant lung cancer.

Authors

Everett J. Moding, Hooney D. Min, Katherine D. Castle, Moiez Ali, Loretta Woodlief, Nerissa Williams, Yan Ma, Yongbaek Kim, Chang-Lung Lee, David G. Kirsch

×

PD-1 blockade enhances the vaccination-induced immune response in glioma
Joseph P. Antonios, … , Linda M. Liau, Robert M. Prins
Joseph P. Antonios, … , Linda M. Liau, Robert M. Prins
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e87059. https://doi.org/10.1172/jci.insight.87059.
View: Text | PDF

PD-1 blockade enhances the vaccination-induced immune response in glioma

  • Text
  • PDF
Abstract

DC vaccination with autologous tumor lysate has demonstrated promising results for the treatment of glioblastoma (GBM) in preclinical and clinical studies. While the vaccine appears capable of inducing T cell infiltration into tumors, the effectiveness of active vaccination in progressively growing tumors is less profound. In parallel, a number of studies have identified negative costimulatory pathways, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1), as relevant mediators of the intratumoral immune responses. Clinical responses to PD-1 pathway inhibition, however, have also been varied. To evaluate the relevance to established glioma, the effects of PD-1 blockade following DC vaccination were tested in intracranial (i.c.) glioma tumor–bearing mice. Treatment with both DC vaccination and PD-1 mAb blockade resulted in long-term survival, while neither agent alone induced a survival benefit in animals with larger, established tumors. This survival benefit was completely dependent on CD8+ T cells. Additionally, DC vaccine plus PD-1 mAb blockade resulted in the upregulation of integrin homing and immunologic memory markers on tumor-infiltrating lymphocytes (TILs). In clinical samples, DC vaccination in GBM patients was associated with upregulation of PD-1 expression in vivo, while ex vivo blockade of PD-1 on freshly isolated TILs dramatically enhanced autologous tumor cell cytolysis. These findings strongly suggest that the PD-1/PD-L1 pathway plays an important role in the adaptive immune resistance of established GBM in response to antitumor active vaccination and provide us with a rationale for the clinical translation of this combination therapy.

Authors

Joseph P. Antonios, Horacio Soto, Richard G. Everson, Joey Orpilla, Diana Moughon, Namjo Shin, Shaina Sedighim, William H. Yong, Gang Li, Timothy F. Cloughesy, Linda M. Liau, Robert M. Prins

×

Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition
Marcin P. Iwanicki, … , Ronny Drapkin, Joan S. Brugge
Marcin P. Iwanicki, … , Ronny Drapkin, Joan S. Brugge
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86829. https://doi.org/10.1172/jci.insight.86829.
View: Text | PDF

Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition

  • Text
  • PDF
Abstract

High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and TWIST1 expression. These results indicate that FNE cells expressing stabilizing p53 mutants acquire anchorage independence and subsequent mesothelial intercalation capacity through a mechanism involving mesenchymal transition and matrix production. These findings provide important new insights into activities of mutant p53 in the cells of origin of HGS-OvCa.

Authors

Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge

×

TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies
Tristan Courau, … , Bertrand Bellier, David Klatzmann
Tristan Courau, … , Bertrand Bellier, David Klatzmann
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e85974. https://doi.org/10.1172/jci.insight.85974.
View: Text | PDF

TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies

  • Text
  • PDF
Abstract

Tregs imprint an early immunotolerant tumor environment that prevents effective antitumor immune responses. Using transcriptomics of tumor tissues, we identified early upregulation of VEGF and TGF-β pathways compatible with tolerance imprinting. Silencing of VEGF or TGF-β in tumor cells induced early and pleiotropic modulation of immune-related transcriptome signatures in tumor tissues. These were surprisingly similar for both silenced tumors and related to common downstream effects on Tregs. Silencing of VEGF or TGF-β resulted in dramatically delayed tumor growth, associated with decreased Tregs and myeloid-derived suppressor cells and increased effector T cell activation in tumor infiltrates. Strikingly, co-silencing of TGF-β and VEGF led to a substantial spontaneous tumor eradication rate and the combination of their respective inhibitory drugs was synergistic. VEGF and/or TGF-β silencing also restored tumor sensitivity to tumor-specific cell therapies and markedly improved the efficacy of anti–PD-1/anti–CTLA-4 treatment. Thus, TGF-β and VEGF cooperatively control the tolerant environment of tumors and are targets for improved cancer immunotherapies.

Authors

Tristan Courau, Djamel Nehar-Belaid, Laura Florez, Béatrice Levacher, Thomas Vazquez, Faustine Brimaud, Bertrand Bellier, David Klatzmann

×

A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia
Marlise R. Luskin, … , Stephen R. Master, Gerald B.W. Wertheim
Marlise R. Luskin, … , Stephen R. Master, Gerald B.W. Wertheim
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e87323. https://doi.org/10.1172/jci.insight.87323.
View: Text | PDF

A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia

  • Text
  • PDF
Abstract

BACKGROUND. Variable response to chemotherapy in acute myeloid leukemia (AML) represents a major treatment challenge. Clinical and genetic features incompletely predict outcome. The value of clinical epigenetic assays for risk classification has not been extensively explored. We assess the prognostic implications of a clinical assay for multilocus DNA methylation on adult patients with de novo AML.

METHODS. We performed multilocus DNA methylation assessment using xMELP on samples and calculated a methylation statistic (M-score) for 166 patients from UPENN with de novo AML who received induction chemotherapy. The association of M-score with complete remission (CR) and overall survival (OS) was evaluated. The optimal M-score cut-point for identifying groups with differing survival was used to define a binary M-score classifier. This classifier was validated in an independent cohort of 383 patients from the Eastern Cooperative Oncology Group Trial 1900 (E1900; NCT00049517).

RESULTS. A higher mean M-score was associated with death and failure to achieve CR. Multivariable analysis confirmed that a higher M-score was associated with death (P = 0.011) and failure to achieve CR (P = 0.034). Median survival was 26.6 months versus 10.6 months for low and high M-score groups. The ability of the M-score to perform as a classifier was confirmed in patients ≤ 60 years with intermediate cytogenetics and patients who achieved CR, as well as in the E1900 validation cohort.

CONCLUSION. The M-score represents a valid binary prognostic classifier for patients with de novo AML. The xMELP assay and associated M-score can be used for prognosis and should be further investigated for clinical decision making in AML patients.

Authors

Marlise R. Luskin, Phyllis A. Gimotty, Catherine Smith, Alison W. Loren, Maria E. Figueroa, Jenna Harrison, Zhuoxin Sun, Martin S. Tallman, Elisabeth M. Paietta, Mark R. Litzow, Ari M. Melnick, Ross L. Levine, Hugo F. Fernandez, Selina M. Luger, Martin Carroll, Stephen R. Master, Gerald B.W. Wertheim

×

Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer
Grit S. Herter-Sprie, … , Alec C. Kimmelman, Kwok-Kin Wong
Grit S. Herter-Sprie, … , Alec C. Kimmelman, Kwok-Kin Wong
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e87415. https://doi.org/10.1172/jci.insight.87415.
View: Text | PDF

Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer

  • Text
  • PDF
Abstract

Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non–small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.

Authors

Grit S. Herter-Sprie, Shohei Koyama, Houari Korideck, Josephine Hai, Jiehui Deng, Yvonne Y. Li, Kevin A. Buczkowski, Aaron K. Grant, Soumya Ullas, Kevin Rhee, Jillian D. Cavanaugh, Neermala Poudel Neupane, Camilla L. Christensen, Jan M. Herter, G. Mike Makrigiorgos, F. Stephen Hodi, Gordon J. Freeman, Glenn Dranoff, Peter S. Hammerman, Alec C. Kimmelman, Kwok-Kin Wong

×

Deficiency of mitochondrial modulator MCJ promotes chemoresistance in breast cancer
Maria J. Fernández-Cabezudo, … , Basel K. al-Ramadi, Mercedes Rincon
Maria J. Fernández-Cabezudo, … , Basel K. al-Ramadi, Mercedes Rincon
Published May 19, 2016
Citation Information: JCI Insight. 2016;1(7):e86873. https://doi.org/10.1172/jci.insight.86873.
View: Text | PDF

Deficiency of mitochondrial modulator MCJ promotes chemoresistance in breast cancer

  • Text
  • PDF
Abstract

Despite major advances in early detection and prognosis, chemotherapy resistance is a major hurdle in the battle against breast cancer. Identifying predictive markers and understanding the mechanisms are key steps to overcoming chemoresistance. Methylation-controlled J protein (MCJ, also known as DNAJC15) is a negative regulator of mitochondrial respiration and has been associated with chemotherapeutic drug sensitivity in cancer cell lines. Here we show, in a retrospective study of a large cohort of breast cancer patients, that low MCJ expression in breast tumors predicts high risk of relapse in patients treated with chemotherapy; however, MCJ expression does not correlate with response to endocrine therapy. In a prospective study in breast cancer patients undergoing neoadjuvant therapy, low MCJ expression also correlates with poor clinical response to chemotherapy and decreased disease-free survival. Using MCJ-deficient mice, we demonstrate that lack of MCJ is sufficient to induce mammary tumor chemoresistance in vivo. Thus, loss of expression of this endogenous mitochondrial modulator in breast cancer promotes the development of chemoresistance.

Authors

Maria J. Fernández-Cabezudo, Issam Faour, Kenneth Jones, Devin P. Champagne, Mohammed A. Jaloudi, Yassir A. Mohamed, Ghada Bashir, Saeeda Almarzooqi, Alia Albawardi, M. Jawad Hashim, Thomas S. Roberts, Haytham El-Salhat, Hakam El-Taji, Adnan Kassis, Dylan E. O’Sullivan, Brock C. Christensen, James DeGregori, Basel K. al-Ramadi, Mercedes Rincon

×

Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors
Heike E. Daldrup-Link, … , Sanjiv Sam Gambhir, Lisa M. Coussens
Heike E. Daldrup-Link, … , Sanjiv Sam Gambhir, Lisa M. Coussens
Published May 5, 2016
Citation Information: JCI Insight. 2016;1(6):e85608. https://doi.org/10.1172/jci.insight.85608.
View: Text | PDF

Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors

  • Text
  • PDF
Abstract

Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies.

Authors

Heike E. Daldrup-Link, Suchismita Mohanty, Celina Ansari, Olga Lenkov, Aubie Shaw, Ken Ito, Su Hyun Hong, Matthias Hoffmann, Laura Pisani, Nancy Boudreau, Sanjiv Sam Gambhir, Lisa M. Coussens

×

Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism
Anup Sood, … , Steven M. Larson, Ingo K. Mellinghoff
Anup Sood, … , Steven M. Larson, Ingo K. Mellinghoff
Published May 5, 2016
Citation Information: JCI Insight. 2016;1(6):e87030. https://doi.org/10.1172/jci.insight.87030.
View: Text | PDF

Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism

  • Text
  • PDF
Abstract

The phenotypic diversity of cancer results from genetic and nongenetic factors. Most studies of cancer heterogeneity have focused on DNA alterations, as technologies for proteomic measurements in clinical specimen are currently less advanced. Here, we used a multiplexed immunofluorescence staining platform to measure the expression of 27 proteins at the single-cell level in formalin-fixed and paraffin-embedded samples from treatment-naive stage II/III human breast cancer. Unsupervised clustering of protein expression data from 638,577 tumor cells in 26 breast cancers identified 8 clusters of protein coexpression. In about one-third of breast cancers, over 95% of all neoplastic cells expressed a single protein coexpression cluster. The remaining tumors harbored tumor cells representing multiple protein coexpression clusters, either in a regional distribution or intermingled throughout the tumor. Tumor uptake of the radiotracer 18F-fluorodeoxyglucose was associated with protein expression clusters characterized by hormone receptor loss, PTEN alteration, and HER2 gene amplification. Our study demonstrates an approach to generate cellular heterogeneity metrics in routinely collected solid tumor specimens and integrate them with in vivo cancer phenotypes.

Authors

Anup Sood, Alexandra M. Miller, Edi Brogi, Yunxia Sui, Joshua Armenia, Elizabeth McDonough, Alberto Santamaria-Pang, Sean Carlin, Aleksandra Stamper, Carl Campos, Zhengyu Pang, Qing Li, Elisa Port, Thomas G. Graeber, Nikolaus Schultz, Fiona Ginty, Steven M. Larson, Ingo K. Mellinghoff

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI Insight:
Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts