Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Metabolism

  • 303 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • Next →
Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice
Alexandra Kuznetsova, … , Arun Sharma, Morris F. White
Alexandra Kuznetsova, … , Arun Sharma, Morris F. White
Published March 17, 2016
Citation Information: JCI Insight. 2016;1(3):e80749. https://doi.org/10.1172/jci.insight.80749.
View: Text | PDF

Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice

  • Text
  • PDF
Abstract

The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes.

Authors

Alexandra Kuznetsova, Yue Yu, Jennifer Hollister-Lock, Lynn Opare-Addo, Aldo Rozzo, Marianna Sadagurski, Lisa Norquay, Jessica E. Reed, Ilham El Khattabi, Susan Bonner-Weir, Gordon C. Weir, Arun Sharma, Morris F. White

×

Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice
Noelia Escobedo, … , Michael Detmar, Guillermo Oliver
Noelia Escobedo, … , Michael Detmar, Guillermo Oliver
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85096. https://doi.org/10.1172/jci.insight.85096.
View: Text | PDF

Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice

  • Text
  • PDF
Abstract

Prox1 heterozygous mice have a defective lymphatic vasculature and develop late-onset obesity. Chyle abnormally leaks from those vessels, accumulates in the surrounding tissues, and causes an increase in adipose tissue. We characterized the lymphatics of Prox1+/– mice to determine whether the extent of obesity correlated with the severity of lymphatic defects. The lymphatic vasculature in Prox1+/– mice exhibited reduced tracer clearance from the ear skin, dysfunctional perfusion of the lower legs, and reduced tracer uptake into the deep lymphatic collectors during mechanostimulation prior to the onset of obesity. Ear lymphatic vessels and leg collectors in Prox1+/– mice were disorganized and irregular, further confirming that defective lymphatic vessels are associated with obesity in Prox1+/– mice. We now provide conclusive in vivo evidence that demonstrates that leaky lymphatics mediate obesity in Prox1+/– mice, as restoration of lymphatic vasculature function was sufficient to rescue the obesity features in Prox1+/– mice. Finally, depth-lipomic profiling of lymph contents showed that free fatty acids induce adipogenesis in vitro.

Authors

Noelia Escobedo, Steven T. Proulx, Sinem Karaman, Miriam E. Dillard, Nicole Johnson, Michael Detmar, Guillermo Oliver

×

Mitochondrial protein hyperacetylation in the failing heart
Julie L. Horton, … , Joshua J. Coon, Daniel P. Kelly
Julie L. Horton, … , Joshua J. Coon, Daniel P. Kelly
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e84897. https://doi.org/10.1172/jci.insight.84897.
View: Text | PDF

Mitochondrial protein hyperacetylation in the failing heart

  • Text
  • PDF
Abstract

Myocardial fuel and energy metabolic derangements contribute to the pathogenesis of heart failure. Recent evidence implicates posttranslational mechanisms in the energy metabolic disturbances that contribute to the pathogenesis of heart failure. We hypothesized that accumulation of metabolite intermediates of fuel oxidation pathways drives posttranslational modifications of mitochondrial proteins during the development of heart failure. Myocardial acetylproteomics demonstrated extensive mitochondrial protein lysine hyperacetylation in the early stages of heart failure in well-defined mouse models and the in end-stage failing human heart. To determine the functional impact of increased mitochondrial protein acetylation, we focused on succinate dehydrogenase A (SDHA), a critical component of both the tricarboxylic acid (TCA) cycle and respiratory complex II. An acetyl-mimetic mutation targeting an SDHA lysine residue shown to be hyperacetylated in the failing human heart reduced catalytic function and reduced complex II–driven respiration. These results identify alterations in mitochondrial acetyl-CoA homeostasis as a potential driver of the development of energy metabolic derangements that contribute to heart failure.

Authors

Julie L. Horton, Ola J. Martin, Ling Lai, Nicholas M. Riley, Alicia L. Richards, Rick B. Vega, Teresa C. Leone, David J. Pagliarini, Deborah M. Muoio, Kenneth C. Bedi Jr., Kenneth B. Margulies, Joshua J. Coon, Daniel P. Kelly

×
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts