Development of novel treatments for lymphedema has been limited by the fact that the pathophysiology of this disease is poorly understood. It remains unknown, for example, why limb swelling resulting from surgical injury resolves initially, but recurs in some cases months or years later. Finding answers for these basic questions has been hampered by the lack of adequate animal models. In the current study, we used
Jason C. Gardenier, Geoffrey E. Hespe, Raghu P. Kataru, Ira L. Savetsky, Jeremy S. Torrisi, Gabriela D. García Nores, Joseph J. Dayan, David Chang, Jamie Zampell, Inés Martínez-Corral, Sagrario Ortega, Babak J. Mehrara
Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS
Kelli M. Sas, Pradeep Kayampilly, Jaeman Byun, Viji Nair, Lucy M. Hinder, Junguk Hur, Hongyu Zhang, Chengmao Lin, Nathan R. Qi, George Michailidis, Per-Henrik Groop, Robert G. Nelson, Manjula Darshi, Kumar Sharma, Jeffrey R. Schelling, John R. Sedor, Rodica Pop-Busui, Joel M. Weinberg, Scott A. Soleimanpour, Steven F. Abcouwer, Thomas W. Gardner, Charles F. Burant, Eva L. Feldman, Matthias Kretzler, Frank C. Brosius III, Subramaniam Pennathur
Oxidative stress is implicated in various neurodegenerative disorders, including retinitis pigmentosa (RP), an inherited disease that causes blindness. The biological and cellular mechanisms by which oxidative stress mediates neuronal cell death are largely unknown. In a mouse model of RP (rd10 mice), we show that oxidative DNA damage activates microglia through MutY homolog–mediated (MUYTH-mediated) base excision repair (BER), thereby exacerbating retinal inflammation and degeneration. In the early stage of retinal degeneration, oxidative DNA damage accumulated in the microglia and caused single-strand breaks (SSBs) and poly(ADP-ribose) polymerase activation. In contrast,
Shunji Nakatake, Yusuke Murakami, Yasuhiro Ikeda, Noriko Morioka, Takashi Tachibana, Kohta Fujiwara, Noriko Yoshida, Shoji Notomi, Toshio Hisatomi, Shigeo Yoshida, Tatsuro Ishibashi, Yusaku Nakabeppu, Koh-Hei Sonoda
Transgenic expression of key myelosupportive human cytokines in immune-deficient mice corrects for the lack of cross-species activities of stem cell factor (SCF), IL-3, and GM-CSF. When engrafted with human umbilical cord blood (UCB), these triple-transgenic mice produce BM and spleen grafts with much higher myeloid composition, relative to nontransgenic controls. Shortly after engraftment with UCB, these mice develop a severe, fatal macrophage activation syndrome (MAS) characterized by a progressive drop in rbc numbers, increased reticulocyte counts, decreased rbc half-life, progressive cytopenias, and evidence of chronic inflammation, including elevated human IL-6. The BM becomes strikingly hypocellular, and spleens are significantly enlarged with evidence of extramedullary hematopoiesis and activated macrophages engaged in hemophagocytosis. This manifestation of MAS does not respond to lymphocyte-suppressive therapies such as steroids, i.v. immunoglobulin, or antibody-mediated ablation of human B and T cells, demonstrating a lymphocyte-independent mechanism of action. In contrast, elimination of human myeloid cells using gemtuzumab ozogamicin (anti-CD33) completely reversed the disease. Additionally, the IL-6R antibody tocilizumab delayed progression and prolonged lifespan. This new model of MAS provides an opportunity for investigation of the mechanisms driving this disease and for the testing of directed therapies in a humanized mouse.
Mark Wunderlich, Courtney Stockman, Mahima Devarajan, Navin Ravishankar, Christina Sexton, Ashish R. Kumar, Benjamin Mizukawa, James C. Mulloy
Using mice rendered insulin resistant with high fat diets (HFD), we examined blood glucose levels and insulin resistance after i.v. delivery of an adeno-associated virus type 8 encoding murine urocortin 2 (AAV8.UCn2). A single i.v. injection of AAV8.UCn2-normalized blood glucose and glucose disposal within weeks, an effect that lasted for months. Hyperinsulinemic-euglycemic clamps showed reduced plasma insulin, increased glucose disposal rates, and increased insulin sensitivity following UCn2 gene transfer. Mice with corticotropin-releasing hormone type 2-receptor deletion that were rendered insulin resistant by HFD showed no improvement in glucose disposal after UCn2 gene transfer, indicating that the effect requires UCn2’s cognate receptor. We also demonstrated increased glucose disposal after UCn2 gene transfer in db/db mice, a second model of insulin resistance. UCn2 gene transfer reduced fatty infiltration of the liver in both models of insulin resistance. UCn2 increases Glut4 translocation to the plasma membrane in skeletal myotubes in a manner quantitatively similar to insulin, indicating a mechanism through which UCn2 operates to increase insulin sensitivity. UCn2 gene transfer, in a dose-dependent manner, is insulin sensitizing and effective for months after a single injection. These findings suggest a potential long-term therapy for clinical type-2 diabetes.
Mei Hua Gao, Dimosthenis Giamouridis, N. Chin Lai, Evelyn Walenta, Vivian Almeida Paschoal, Young Chul Kim, Atsushi Miyanohara, Tracy Guo, Min Liao, Li Liu, Zhen Tan, Theodore P. Ciaraldi, Simon Schenk, Aditi Bhargava, Da Young Oh, H. Kirk Hammond
Primary pigmented nodular adrenocortical disease (PPNAD) is a rare cause of ACTH-independent hypercortisolism. The disease is primarily caused by germline mutations of the protein kinase A (PKA) regulatory subunit 1A (
Zakariae Bram, Estelle Louiset, Bruno Ragazzon, Sylvie Renouf, Julien Wils, Céline Duparc, Isabelle Boutelet, Marthe Rizk-Rabin, Rossella Libé, Jacques Young, Dennis Carson, Marie-Christine Vantyghem, Eva Szarek, Antoine Martinez, Constantine A. Stratakis, Jérôme Bertherat, Hervé Lefebvre
Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with
Megan S. Inkeles, Rosane M.B. Teles, Delila Pouldar, Priscila R. Andrade, Cressida A. Madigan, David Lopez, Mike Ambrose, Mahdad Noursadeghi, Euzenir N. Sarno, Thomas H. Rea, Maria T. Ochoa, M. Luisa Iruela-Arispe, William R. Swindell, Tom H.M. Ottenhoff, Annemieke Geluk, Barry R. Bloom, Matteo Pellegrini, Robert L. Modlin
Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (
Laëtitia Le Texier, Katie E. Lineburg, Benjamin Cao, Cameron McDonald-Hyman, Lucie Leveque-El Mouttie, Jemma Nicholls, Michelle Melino, Blessy C. Nalkurthi, Kylie A. Alexander, Bianca Teal, Stephen J. Blake, Fernando Souza-Fonseca-Guimaraes, Christian R. Engwerda, Rachel D. Kuns, Steven W. Lane, Michele Teng, Charis Teh, Daniel Gray, Andrew D. Clouston, Susan K. Nilsson, Bruce R. Blazar, Geoffrey R. Hill, Kelli P.A. MacDonald
Catheter-associated urinary tract infections (CAUTI) are the most common hospital-associated infections. Here, we report that bladder catheterization initiated a persistent sterile inflammatory reaction within minutes of catheter implantation. Catheterization resulted in increased expression of genes associated with defense responses and cellular migration, with ensuing rapid and sustained innate immune cell infiltration into the bladder. Catheterization also resulted in hypersensitivity to
Matthieu Rousseau, H.M. Sharon Goh, Sarah Holec, Matthew L. Albert, Rohan B.H. Williams, Molly A. Ingersoll, Kimberly A. Kline
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against
Kamal El Bissati, Aziz A. Chentoufi, Paulette A. Krishack, Ying Zhou, Stuart Woods, Jitender P. Dubey, Lo Vang, Joseph Lykins, Kate E. Broderick, Ernest Mui, Yasuhiro Suzuki, Qila Sa, Stephanie Bi, Nestor Cardona, Shiv K. Verma, Laura Frazeck, Catherine A. Reardon, John Sidney, Jeff Alexander, Alessandro Sette, Tom Vedvick, Chris Fox, Jeffrey A. Guderian, Steven Reed, Craig W. Roberts, Rima McLeod
No posts were found with this tag.