Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 2,893 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 280
  • 281
  • 282
  • …
  • 289
  • 290
  • Next →
Maternal obesity drives functional alterations in uterine NK cells
Sofie Perdu, … , Lauren DeLuca, Alexander G. Beristain
Sofie Perdu, … , Lauren DeLuca, Alexander G. Beristain
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e85560. https://doi.org/10.1172/jci.insight.85560.
View: Text | PDF

Maternal obesity drives functional alterations in uterine NK cells

  • Text
  • PDF
Abstract

Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development.

Authors

Sofie Perdu, Barbara Castellana, Yoona Kim, Kathy Chan, Lauren DeLuca, Alexander G. Beristain

×

Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors
Yingai Jane Jin, … , George Mosialos, Jennifer Y. Zhang
Yingai Jane Jin, … , George Mosialos, Jennifer Y. Zhang
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e86548. https://doi.org/10.1172/jci.insight.86548.
View: Text | PDF

Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors

  • Text
  • PDF
Abstract

The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant–syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre–mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c–Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome.

Authors

Yingai Jane Jin, Sally Wang, Joshua Cho, M. Angelica Selim, Tim Wright, George Mosialos, Jennifer Y. Zhang

×

Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life
Elizabeth R. Davies, … , Jeffrey A. Whitsett, Hans Michael Haitchi
Elizabeth R. Davies, … , Jeffrey A. Whitsett, Hans Michael Haitchi
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87632. https://doi.org/10.1172/jci.insight.87632.
View: Text | PDF

Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life

  • Text
  • PDF
Abstract

Asthma is a chronic inflammatory airways disease that usually begins in early life and involves gene-environment interactions. Although most asthma exhibits allergic inflammation, many allergic individuals do not have asthma. Here, we report how the asthma gene a disintegrin and metalloprotease 33 (ADAM33) acts as local tissue susceptibility gene that promotes allergic asthma. We show that enzymatically active soluble ADAM33 (sADAM33) is increased in asthmatic airways and plays a role in airway remodeling, independent of inflammation. Furthermore, remodeling and inflammation are both suppressed in Adam33-null mice after allergen challenge. When induced in utero or added ex vivo, sADAM33 causes structural remodeling of the airways, which enhances postnatal airway eosinophilia and bronchial hyperresponsiveness following subthreshold challenge with an aeroallergen. This substantial gene-environment interaction helps to explain the end-organ expression of allergic asthma in genetically susceptible individuals. Finally, we show that sADAM33-induced airway remodeling is reversible, highlighting the therapeutic potential of targeting ADAM33 in asthma.

Authors

Elizabeth R. Davies, Joanne F.C. Kelly, Peter H. Howarth, David I. Wilson, Stephen T. Holgate, Donna E. Davies, Jeffrey A. Whitsett, Hans Michael Haitchi

×

Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation
Kong Chen, … , Joseph M. Pilewski, Jay K. Kolls
Kong Chen, … , Joseph M. Pilewski, Jay K. Kolls
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87168. https://doi.org/10.1172/jci.insight.87168.
View: Text | PDF

Antiinflammatory effects of bromodomain and extraterminal domain inhibition in cystic fibrosis lung inflammation

  • Text
  • PDF
Abstract

Significant morbidity in cystic fibrosis (CF) results from chronic lung inflammation, most commonly due to Pseudomonas aeruginosa infection. Recent data suggest that IL-17 contributes to pathological inflammation in the setting of abnormal mucosal immunity, and type 17 immunity–driven inflammatory responses may represent a target to block aberrant inflammation in CF. Indeed, transcriptomic analysis of the airway epithelium from CF patients undergoing clinical bronchoscopy revealed upregulation of IL-17 downstream signature genes, implicating a substantial contribution of IL-17–mediated immunity in CF lungs. Bromodomain and extraterminal domain (BET) chromatin modulators can regulate T cell responses, specifically Th17-mediated inflammation, by mechanisms that include bromodomain-dependent inhibition of acetylated histones at the IL17 locus. Here, we show that, in vitro, BET inhibition potently suppressed Th17 cell responses in explanted CF tissue and inhibited IL-17–driven chemokine production in human bronchial epithelial cells. In an acute P. aeruginosa lung infection murine model, BET inhibition decreased inflammation, without exacerbating infection, suggesting that BET inhibition may be a potential therapeutic target in patients with CF.

Authors

Kong Chen, Brian T. Campfield, Sally E. Wenzel, Jeremy P. McAleer, James L. Kreindler, Geoffrey Kurland, Radha Gopal, Ting Wang, Wei Chen, Taylor Eddens, Kathleen M. Quinn, Mike M. Myerburg, William T. Horne, Jose M. Lora, Brian K. Albrecht, Joseph M. Pilewski, Jay K. Kolls

×

Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus
Orhan Efe, … , Huiwen Ren, Jeff M. Sands
Orhan Efe, … , Huiwen Ren, Jeff M. Sands
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e88409. https://doi.org/10.1172/jci.insight.88409.
View: Text | PDF

Metformin improves urine concentration in rodents with nephrogenic diabetes insipidus

  • Text
  • PDF
Abstract

Urine concentration is regulated by vasopressin. Congenital nephrogenic diabetes insipidus (NDI) is caused by vasopressin type 2 receptor (V2R) mutations. We studied whether metformin could improve urine concentration in rodent models of congenital NDI by stimulating AMPK. To block the V2R in rats, tolvaptan (10 mg/kg/d) was given by oral gavage with or without metformin (800 mg/kg/d). Control rats received vehicle with or without metformin. Tamoxifen-induced V2R KO mice were given metformin (600 mg/kg) or vehicle twice daily. Urine osmolality in tolvaptan-treated rats (1,303 ± 126 mOsM) was restored to control levels by metformin (2,335 ± 273 mOsM) within 3 days and was sustained for up to 10 days. Metformin increased protein abundance of inner medullary urea transporter UT-A1 by 61% and aquaporin 2 (AQP2) by 44% in tolvaptan-treated rats, and immunohistochemistry showed increased membrane accumulation of AQP2 with acute and chronic AMPK stimulation. Outer medullary Na+-K+-2Cl– cotransporter 2 (NKCC2) abundance increased (117%) with AMPK stimulation in control rats but not in V2R-blocked rats. Metformin increased V2R KO mouse urine osmolality within 3 hours, and the increase persisted for up to 12 hours. Metformin increased AQP2 in the V2R KO mice similar to the tolvaptan-treated rats. These results indicate that AMPK activators, such as metformin, might provide a promising treatment for congenital NDI.

Authors

Orhan Efe, Janet D. Klein, Lauren M. LaRocque, Huiwen Ren, Jeff M. Sands

×

Protective and detrimental effects of neuroectodermal cell–derived tissue factor in mouse models of stroke
Shaobin Wang, … , Nigel Mackman, Rafal Pawlinski
Shaobin Wang, … , Nigel Mackman, Rafal Pawlinski
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e86663. https://doi.org/10.1172/jci.insight.86663.
View: Text | PDF

Protective and detrimental effects of neuroectodermal cell–derived tissue factor in mouse models of stroke

  • Text
  • PDF
Abstract

Within the CNS, a dysregulated hemostatic response contributes to both hemorrhagic and ischemic strokes. Tissue factor (TF), the primary initiator of the extrinsic coagulation cascade, plays an essential role in hemostasis and also contributes to thrombosis. Using both genetic and pharmacologic approaches, we characterized the contribution of neuroectodermal (NE) cell TF to the pathophysiology of stroke. We used mice with various levels of TF expression and found that astrocyte TF activity reduced to ~5% of WT levels was still sufficient to maintain hemostasis after hemorrhagic stroke but was also low enough to attenuate inflammation, reduce damage to the blood-brain barrier, and improve outcomes following ischemic stroke. Pharmacologic inhibition of TF during the reperfusion phase of ischemic stroke attenuated neuronal damage, improved behavioral deficit, and prevented mortality of mice. Our data demonstrate that NE cell TF limits bleeding complications associated with the transition from ischemic to hemorrhagic stroke and also contributes to the reperfusion injury after ischemic stroke. The high level of TF expression in the CNS is likely the result of selective pressure to limit intracerebral hemorrhage (ICH) after traumatic brain injury but, in the modern era, poses the additional risk of increased ischemia-reperfusion injury after ischemic stroke.

Authors

Shaobin Wang, Brandi Reeves, Erica M. Sparkenbaugh, Janice Russell, Zbigniew Soltys, Hua Zhang, James E. Faber, Nigel S. Key, Daniel Kirchhofer, D. Neil Granger, Nigel Mackman, Rafal Pawlinski

×

Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis
Resat Cinar, … , Robert B. Innis, George Kunos
Resat Cinar, … , Robert B. Innis, George Kunos
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87336. https://doi.org/10.1172/jci.insight.87336.
View: Text | PDF

Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

  • Text
  • PDF
Abstract

Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1–/– but not in nos2–/– mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

Authors

Resat Cinar, Malliga R. Iyer, Ziyi Liu, Zongxian Cao, Tony Jourdan, Katalin Erdelyi, Grzegorz Godlewski, Gergő Szanda, Jie Liu, Joshua K. Park, Bani Mukhopadhyay, Avi Z. Rosenberg, Jeih-San Lieow, Robin G. Lorenz, Pal Pacher, Robert B. Innis, George Kunos

×

Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy
Rachael A. Powis, … , Mimoun Azzouz, Thomas H. Gillingwater
Rachael A. Powis, … , Mimoun Azzouz, Thomas H. Gillingwater
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87908. https://doi.org/10.1172/jci.insight.87908.
View: Text | PDF

Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy

  • Text
  • PDF
Abstract

The autosomal recessive neuromuscular disease spinal muscular atrophy (SMA) is caused by loss of survival motor neuron (SMN) protein. Molecular pathways that are disrupted downstream of SMN therefore represent potentially attractive therapeutic targets for SMA. Here, we demonstrate that therapeutic targeting of ubiquitin pathways disrupted as a consequence of SMN depletion, by increasing levels of one key ubiquitination enzyme (ubiquitin-like modifier activating enzyme 1 [UBA1]), represents a viable approach for treating SMA. Loss of UBA1 was a conserved response across mouse and zebrafish models of SMA as well as in patient induced pluripotent stem cell–derive motor neurons. Restoration of UBA1 was sufficient to rescue motor axon pathology and restore motor performance in SMA zebrafish. Adeno-associated virus serotype 9–UBA1 (AAV9-UBA1) gene therapy delivered systemic increases in UBA1 protein levels that were well tolerated over a prolonged period in healthy control mice. Systemic restoration of UBA1 in SMA mice ameliorated weight loss, increased survival and motor performance, and improved neuromuscular and organ pathology. AAV9-UBA1 therapy was also sufficient to reverse the widespread molecular perturbations in ubiquitin homeostasis that occur during SMA. We conclude that UBA1 represents a safe and effective therapeutic target for the treatment of both neuromuscular and systemic aspects of SMA.

Authors

Rachael A. Powis, Evangelia Karyka, Penelope Boyd, Julien Côme, Ross A. Jones, Yinan Zheng, Eva Szunyogova, Ewout J.N. Groen, Gillian Hunter, Derek Thomson, Thomas M. Wishart, Catherina G. Becker, Simon H. Parson, Cécile Martinat, Mimoun Azzouz, Thomas H. Gillingwater

×

A small-molecule inhibitor of SHIP1 reverses age- and diet-associated obesity and metabolic syndrome
Neetu Srivastava, … , John D. Chisholm, William G. Kerr
Neetu Srivastava, … , John D. Chisholm, William G. Kerr
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e88544. https://doi.org/10.1172/jci.insight.88544.
View: Text | PDF

A small-molecule inhibitor of SHIP1 reverses age- and diet-associated obesity and metabolic syndrome

  • Text
  • PDF
Abstract

Low-grade chronic inflammation is a key etiological phenomenon responsible for the initiation and perpetuation of obesity and diabetes. Novel therapeutic approaches that can specifically target inflammatory pathways are needed to avert this looming epidemic of metabolic disorders. Genetic and chemical inhibition of SH2-containing inositol 5′ phosphatase 1 (SHIP1) has been associated with systemic expansion of immunoregulatory cells that promote a lean-body state; however, SHIP1 function in immunometabolism has never been assessed. This led us to investigate the role of SHIP1 in metabolic disorders during excess caloric intake in mice. Using a small-molecule inhibitor of SHIP1 (SHIPi), here we show that SHIPi treatment in mice significantly reduces body weight and fat content, improves control of blood glucose and insulin sensitivity, and increases energy expenditure, despite continued consumption of a high-fat diet. Additionally, SHIPi reduces age-associated fat in mice. We found that SHIPi treatment reverses diet-associated obesity by attenuating inflammation in the visceral adipose tissue (VAT). SHIPi treatment increases IL-4–producing eosinophils in VAT and consequently increases both alternatively activated macrophages and myeloid-derived suppressor cells. In addition, SHIPi decreases the number of IFN-γ–producing T cells and NK cells in VAT. Thus, SHIPi represents an approach that permits control of obesity and diet-induced metabolic syndrome without apparent toxicity.

Authors

Neetu Srivastava, Sonia Iyer, Raki Sudan, Christie Youngs, Robert W. Engelman, Kyle T. Howard, Christopher M. Russo, John D. Chisholm, William G. Kerr

×

ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction
Oscar Bartulos, … , Jordan S. Pober, Yibing Qyang
Oscar Bartulos, … , Jordan S. Pober, Yibing Qyang
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e80920. https://doi.org/10.1172/jci.insight.80920.
View: Text | PDF

ISL1 cardiovascular progenitor cells for cardiac repair after myocardial infarction

  • Text
  • PDF
Abstract

Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM–homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here, we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts, where they differentiated into cardiomyocytes and endothelial cells, integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid–treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover, left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that, based on our previous lineage-tracing studies, are committed to forming heart tissue, in combination with a robust methylcellulose spheroid–based delivery approach.

Authors

Oscar Bartulos, Zhen Wu Zhuang, Yan Huang, Nicole Mikush, Carol Suh, Alda Bregasi, Lin Wang, William Chang, Diane S. Krause, Lawrence H. Young, Jordan S. Pober, Yibing Qyang

×
  • ← Previous
  • 1
  • 2
  • …
  • 280
  • 281
  • 282
  • …
  • 289
  • 290
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts