Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 2,813 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 274
  • 275
  • 276
  • …
  • 281
  • 282
  • Next →
Impact of early cART in the gut during acute HIV infection
Claire Deleage, … , Jacob D. Estes, on behalf of the RV254/SEARCH 010 and RV304/SEARCH 013 Study Groups
Claire Deleage, … , Jacob D. Estes, on behalf of the RV254/SEARCH 010 and RV304/SEARCH 013 Study Groups
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e87065. https://doi.org/10.1172/jci.insight.87065.
View: Text | PDF

Impact of early cART in the gut during acute HIV infection

  • Text
  • PDF
Abstract

Early after HIV infection there is substantial depletion of CD4+ T cells in the gastrointestinal (GI) tract lamina propria (LP), with associated epithelial barrier damage, leading to microbial translocation and systemic inflammation and immune activation. In this study, we analyzed these early events in the GI tract in a cohort of Thai acute HIV-infected patients and determined the effect of early combination antiretroviral treatment (cART). HIV-uninfected and chronically and acutely HIV-infected patients at different Fiebig stages (I–V) underwent colonic biopsies and then received cART. Immunohistochemistry and quantitative image analysis were performed on cross-sectional and longitudinal colon biopsy specimens (day 0 to week 96) to measure GI tract damage (infiltration of polymorphonuclear cells), inflammation (Mx1, TNF-α), immune activation (Ki-67), and the CD4+ T cell population in the LP. The magnitude of GI tract damage, immune activation, and inflammation was significantly increased, with significantly depleted CD4+ T cells in the LP in all acutely infected groups prior to cART compared with HIV-uninfected control participants. While most patients treated during acute infection resolved GI tract inflammation and immune activation back to baseline levels after 24 weeks of cART, most acutely infected participants did not restore their CD4+ T cells after 96 weeks of cART.

Authors

Claire Deleage, Alexandra Schuetz, W. Gregory Alvord, Leslie Johnston, Xing-Pei Hao, David R. Morcock, Rungsun Rerknimitr, James L.K. Fletcher, Suwanna Puttamaswin, Nittaya Phanuphak, Robin Dewar, Joseph M. McCune, Irini Sereti, Merlin Robb, Jerome H. Kim, Timothy W. Schacker, Peter Hunt, Jeffrey D. Lifson, Jintanat Ananworanich, Jacob D. Estes, on behalf of the RV254/SEARCH 010 and RV304/SEARCH 013 Study Groups

×

Recognition of influenza H3N2 variant virus by human neutralizing antibodies
Sandhya Bangaru, … , Andrew B. Ward, James E. Crowe Jr.
Sandhya Bangaru, … , Andrew B. Ward, James E. Crowe Jr.
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86673. https://doi.org/10.1172/jci.insight.86673.
View: Text | PDF

Recognition of influenza H3N2 variant virus by human neutralizing antibodies

  • Text
  • PDF
Abstract

Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s.

Authors

Sandhya Bangaru, Travis Nieusma, Nurgun Kose, Natalie J. Thornburg, Jessica A. Finn, Bryan S. Kaplan, Hannah G. King, Vidisha Singh, Rebecca M. Lampley, Gopal Sapparapu, Alberto Cisneros III, Kathryn M. Edwards, James C. Slaughter, Srilatha Edupuganti, Lilin Lai, Juergen A. Richt, Richard J. Webby, Andrew B. Ward, James E. Crowe Jr.

×

Transplantation of human skin microbiota in models of atopic dermatitis
Ian A. Myles, … , Kelly D. Stone, Sandip K. Datta
Ian A. Myles, … , Kelly D. Stone, Sandip K. Datta
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86955. https://doi.org/10.1172/jci.insight.86955.
View: Text | PDF

Transplantation of human skin microbiota in models of atopic dermatitis

  • Text
  • PDF
Abstract

Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to Staphylococcus aureus. Host susceptibility factors are suggested by monogenic disorders associated with AD-like phenotypes and can be medically modulated. S. aureus contributes to AD pathogenesis and can be mitigated by antibiotics and bleach baths. Recent work has revealed that the skin microbiome differs significantly between healthy controls and patients with AD, including decreased Gram-negative bacteria in AD. However, little is known about the potential therapeutic benefit of microbiome modulation. To evaluate whether parameters of AD pathogenesis are altered after exposure to different culturable Gram-negative bacteria (CGN) collected from human skin, CGN were collected from healthy controls and patients with AD. Then, effects on cellular and culture-based models of immune, epithelial, and bacterial function were evaluated. Representative strains were evaluated in the MC903 mouse model of AD. We found that CGN taken from healthy volunteers but not from patients with AD were associated with enhanced barrier function, innate immunity activation, and control of S. aureus. Treatment with CGN from healthy controls improved outcomes in a mouse model of AD. These findings suggest that a live-biotherapeutic approach may hold promise for treatment of patients with AD.

Authors

Ian A. Myles, Kelli W. Williams, Jensen D. Reckhow, Momodou L. Jammeh, Nathan B. Pincus, Inka Sastalla, Danial Saleem, Kelly D. Stone, Sandip K. Datta

×

Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes
Gaurang Jhala, … , Thomas W.H. Kay, Balasubramanian Krishnamurthy
Gaurang Jhala, … , Thomas W.H. Kay, Balasubramanian Krishnamurthy
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e86065. https://doi.org/10.1172/jci.insight.86065.
View: Text | PDF

Perinatal tolerance to proinsulin is sufficient to prevent autoimmune diabetes

  • Text
  • PDF
Abstract

High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206–214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206–214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.

Authors

Gaurang Jhala, Jonathan Chee, Prerak M. Trivedi, Claudia Selck, Esteban N. Gurzov, Kate L. Graham, Helen E. Thomas, Thomas W.H. Kay, Balasubramanian Krishnamurthy

×

Vaccine-generated lung tissue–resident memory T cells provide heterosubtypic protection to influenza infection
Kyra D. Zens, … , Jun Kui Chen, Donna L. Farber
Kyra D. Zens, … , Jun Kui Chen, Donna L. Farber
Published July 7, 2016
Citation Information: JCI Insight. 2016;1(10):e85832. https://doi.org/10.1172/jci.insight.85832.
View: Text | PDF

Vaccine-generated lung tissue–resident memory T cells provide heterosubtypic protection to influenza infection

  • Text
  • PDF
Abstract

Tissue-resident memory T cells (TRM) are a recently defined, noncirculating subset with the potential for rapid in situ protective responses, although their generation and role in vaccine-mediated immune responses is unclear. Here, we assessed TRM generation and lung-localized protection following administration of currently licensed influenza vaccines, including injectable inactivated influenza virus (IIV, Fluzone) and i.n. administered live-attenuated influenza virus (LAIV, FluMist) vaccines. We found that, while IIV preferentially induced strain-specific neutralizing antibodies, LAIV generated lung-localized, virus-specific T cell responses. Moreover, LAIV but not IIV generated lung CD4+ TRM and virus-specific CD8+ TRM, similar in phenotype to those generated by influenza virus infection. Importantly, these vaccine-generated TRM mediated cross-strain protection, independent of circulating T cells and neutralizing antibodies, which persisted long-term after vaccination. Interestingly, intranasal administration of IIV or injection of LAIV failed to elicit T cell responses or provide protection against viral infection, demonstrating dual requirements for respiratory targeting and a live-attenuated strain to establish TRM. The ability of LAIV to generate lung TRM capable of providing long-term protection against nonvaccine viral strains, as demonstrated here, has important implications for protecting the population against emergent influenza pandemics by direct fortification of lung-specific immunity.

Authors

Kyra D. Zens, Jun Kui Chen, Donna L. Farber

×

CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury
Vassilios J. Bezzerides, … , Bruce M. Spiegelman, Anthony Rosenzweig
Vassilios J. Bezzerides, … , Bruce M. Spiegelman, Anthony Rosenzweig
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e85904. https://doi.org/10.1172/jci.insight.85904.
View: Text | PDF

CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury

  • Text
  • PDF
Abstract

The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4’s effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury.

Authors

Vassilios J. Bezzerides, Colin Platt, Carolin Lerchenmüller, Kaavya Paruchuri, Nul Loren Oh, Chunyang Xiao, Yunshan Cao, Nina Mann, Bruce M. Spiegelman, Anthony Rosenzweig

×

A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes
Florian Grahammer, … , Achilleas S. Frangakis, Tobias B. Huber
Florian Grahammer, … , Achilleas S. Frangakis, Tobias B. Huber
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e86177. https://doi.org/10.1172/jci.insight.86177.
View: Text | PDF

A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes

  • Text
  • PDF
Abstract

Vertebrate life critically depends on renal filtration and excretion of low molecular weight waste products. This process is controlled by a specialized cell-cell contact between podocyte foot processes: the slit diaphragm (SD). Using a comprehensive set of targeted KO mice of key SD molecules, we provided genetic, functional, and high-resolution ultrastructural data highlighting a concept of a flexible, dynamic, and multilayered architecture of the SD. Our data indicate that the mammalian SD is composed of NEPHRIN and NEPH1 molecules, while NEPH2 and NEPH3 do not participate in podocyte intercellular junction formation. Unexpectedly, homo- and heteromeric NEPHRIN/NEPH1 complexes are rarely observed. Instead, single NEPH1 molecules appear to form the lower part of the junction close to the glomerular basement membrane with a width of 23 nm, while single NEPHRIN molecules form an adjacent junction more apically with a width of 45 nm. In both cases, the molecules are quasiperiodically spaced 7 nm apart. These structural findings, in combination with the flexibility inherent to the repetitive Ig folds of NEPHRIN and NEPH1, indicate that the SD likely represents a highly dynamic cell-cell contact that forms an adjustable, nonclogging barrier within the renal filtration apparatus.

Authors

Florian Grahammer, Christoph Wigge, Christoph Schell, Oliver Kretz, Jaakko Patrakka, Simon Schneider, Martin Klose, Sebastian J. Arnold, Anja Habermann, Ricarda Bräuniger, Markus M. Rinschen, Linus Völker, Andreas Bregenzer, Dennis Rubbenstroth, Melanie Boerries, Dontscho Kerjaschki, Jeffrey H. Miner, Gerd Walz, Thomas Benzing, Alessia Fornoni, Achilleas S. Frangakis, Tobias B. Huber

×

TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies
Tristan Courau, … , Bertrand Bellier, David Klatzmann
Tristan Courau, … , Bertrand Bellier, David Klatzmann
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e85974. https://doi.org/10.1172/jci.insight.85974.
View: Text | PDF

TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies

  • Text
  • PDF
Abstract

Tregs imprint an early immunotolerant tumor environment that prevents effective antitumor immune responses. Using transcriptomics of tumor tissues, we identified early upregulation of VEGF and TGF-β pathways compatible with tolerance imprinting. Silencing of VEGF or TGF-β in tumor cells induced early and pleiotropic modulation of immune-related transcriptome signatures in tumor tissues. These were surprisingly similar for both silenced tumors and related to common downstream effects on Tregs. Silencing of VEGF or TGF-β resulted in dramatically delayed tumor growth, associated with decreased Tregs and myeloid-derived suppressor cells and increased effector T cell activation in tumor infiltrates. Strikingly, co-silencing of TGF-β and VEGF led to a substantial spontaneous tumor eradication rate and the combination of their respective inhibitory drugs was synergistic. VEGF and/or TGF-β silencing also restored tumor sensitivity to tumor-specific cell therapies and markedly improved the efficacy of anti–PD-1/anti–CTLA-4 treatment. Thus, TGF-β and VEGF cooperatively control the tolerant environment of tumors and are targets for improved cancer immunotherapies.

Authors

Tristan Courau, Djamel Nehar-Belaid, Laura Florez, Béatrice Levacher, Thomas Vazquez, Faustine Brimaud, Bertrand Bellier, David Klatzmann

×

Whole-exome sequencing identifies ADRA2A mutation in atypical familial partial lipodystrophy
Abhimanyu Garg, … , Chao Xing, Anil K. Agarwal
Abhimanyu Garg, … , Chao Xing, Anil K. Agarwal
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e86870. https://doi.org/10.1172/jci.insight.86870.
View: Text | PDF

Whole-exome sequencing identifies ADRA2A mutation in atypical familial partial lipodystrophy

  • Text
  • PDF
Abstract

Despite identification of causal genes for various lipodystrophy syndromes, the molecular basis of some peculiar lipodystrophies remains obscure. In an African-American pedigree with a novel autosomal dominant, atypical familial partial lipodystrophy (FPLD), we performed linkage analysis for candidate regions and whole-exome sequencing to identify the disease-causing mutation. Affected adults reported marked loss of fat from the extremities, with excess fat in the face and neck at age 13–15 years, and developed metabolic complications later. A heterozygous g.112837956C>T mutation on chromosome 10 (c.202C>T, p.Leu68Phe) affecting a highly conserved residue in adrenoceptor α 2A (ADRA2A) was found in all affected subjects but not in unaffected relatives. ADRA2A is the main presynaptic inhibitory feedback G protein–coupled receptor regulating norepinephrine release. Activation of ADRA2A inhibits cAMP production and reduces lipolysis in adipocytes. As compared with overexpression of a wild-type ADRA2A construct in human embryonic kidney–293 cells and differentiated 3T3-L1 adipocytes, the mutant ADRA2A produced more cAMP and glycerol, which were resistant to the effects of the α2-adrenergic receptor agonist clonidine and the α2-adrenergic receptor antagonist yohimbine, suggesting loss of function. We conclude that heterozygous p.Leu68Phe ADRA2A mutation causes a rare atypical FPLD, most likely by inducing excessive lipolysis in some adipose tissue depots.

Authors

Abhimanyu Garg, Shireesha Sankella, Chao Xing, Anil K. Agarwal

×

PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution
Ghayda Mirzaa, … , Renzo Guerrini, William B. Dobyns
Ghayda Mirzaa, … , Renzo Guerrini, William B. Dobyns
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e87623. https://doi.org/10.1172/jci.insight.87623.
View: Text | PDF

PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

  • Text
  • PDF
Abstract

Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identified PIK3CA mutations in 60 individuals. Several other individuals (n = 12) were identified separately to have mutations in PIK3CA by clinical targeted-panel testing (n = 6), whole-exome sequencing (n = 5), or Sanger sequencing (n = 1). Based on the clinical and molecular features, this cohort segregated into three distinct groups: (a) severe focal overgrowth due to low-level but highly activating (hotspot) mutations, (b) predominantly brain overgrowth and less severe somatic overgrowth due to less-activating mutations, and (c) intermediate phenotypes (capillary malformations with overgrowth) with intermediately activating mutations. Sixteen of 29 PIK3CA mutations were novel. We also identified constitutional PIK3CA mutations in 10 patients. Our molecular data, combined with review of the literature, show that PIK3CA-related overgrowth disorders comprise a discontinuous spectrum of disorders that correlate with the severity and distribution of mutations.

Authors

Ghayda Mirzaa, Andrew E. Timms, Valerio Conti, Evan August Boyle, Katta M. Girisha, Beth Martin, Martin Kircher, Carissa Olds, Jane Juusola, Sarah Collins, Kaylee Park, Melissa Carter, Ian Glass, Inge Krägeloh-Mann, David Chitayat, Aditi Shah Parikh, Rachael Bradshaw, Erin Torti, Steve Braddock, Leah Burke, Sondhya Ghedia, Mark Stephan, Fiona Stewart, Chitra Prasad, Melanie Napier, Sulagna Saitta, Rachel Straussberg, Michael Gabbett, Bridget C. O’Connor, Catherine E. Keegan, Lim Jiin Yin, Angeline Hwei Meeng Lai, Nicole Martin, Margaret McKinnon, Marie-Claude Addor, Luigi Boccuto, Charles E. Schwartz, Agustina Lanoel, Robert L. Conway, Koenraad Devriendt, Katrina Tatton-Brown, Mary Ella Pierpont, Michael Painter, Lisa Worgan, James Reggin, Raoul Hennekam, Karen Tsuchiya, Colin C. Pritchard, Mariana Aracena, Karen W. Gripp, Maria Cordisco, Hilde Van Esch, Livia Garavelli, Cynthia Curry, Anne Goriely, Hulya Kayserilli, Jay Shendure, John Graham Jr., Renzo Guerrini, William B. Dobyns

×
  • ← Previous
  • 1
  • 2
  • …
  • 274
  • 275
  • 276
  • …
  • 281
  • 282
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts