Polyarticular juvenile idiopathic arthritis (JIA) is among the most challenging of the JIA subtypes to treat. Even with current biologic therapies, the disease remains difficult to control in a substantial subset of patients, highlighting the need for new therapies. The aim of this study was to use the high dimensionality afforded by mass cytometry with phospho-specific antibodies to delineate signaling abnormalities in immune cells from treatment-naive polyarticular JIA patients. Peripheral blood mononuclear cells were isolated from 17 treatment-naive polyarticular JIA patients, 10 of the patients after achieving clinical remission, and 19 healthy controls. Samples were stimulated for 15 minutes with IL-6 or IFN-γ and analyzed by mass cytometry. Following IFN-γ stimulation, increased STAT1 and/or STAT3 phosphorylation was observed in subsets of CD4 T cells and classical monocytes from treatment-naive patients. The enhanced IFN-γ signaling was associated with increased expression of JAK1 and SOCS1 in CD4 T cells. Furthermore, substantial heterogeneity in surface marker expression was observed among the subsets of CD4 T cells and classical monocytes with increased IFN-γ responsiveness. The identification of enhanced IFN-γ signaling in CD4 T cells and classical monocytes from treatment-naive polyarticular JIA patients provides mechanistic support for investigations into therapies that attenuate IFN-γ signaling in this disease.
Allison A. Throm, Halima Moncrieffe, Amir B. Orandi, Jeanette T. Pingel, Theresa L. Geurs, Hannah L. Miller, Allyssa L. Daugherty, Olga N. Malkova, Daniel J. Lovell, Susan D. Thompson, Alexei A. Grom, Megan A. Cooper, Stephen T. Oh, Anthony R. French
Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1–dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.
Yan Huang, Conor McClenaghan, Theresa M. Harter, Kristina Hinman, Carmen M. Halabi, Scot J. Matkovich, Haixia Zhang, G. Schuyler Brown, Robert P. Mecham, Sarah K. England, Attila Kovacs, Maria S. Remedi, Colin G. Nichols
Alloreactive T lymphocytes are the primary mediators of immune responses in transplantation, both in the graft-versus-host and host-versus-graft directions. While essentially all clones comprising the human T cell repertoire have been selected on self-peptide presented by self–human leukocyte antigens (self-HLAs), much remains to be understood about the nature of clones capable of responding to allo-HLA molecules. Quantitative tools to study these cells are critical to understand fundamental features of this important response; however, the large size and diversity of the alloreactive T cell repertoire in humans presents a great technical challenge. We have developed a high-throughput T cell receptor (TCR) sequencing approach to characterize the human alloresponse. We present a statistical method to model T cell clonal frequency distribution and quantify repertoire diversity. Using these approaches, we measured the diversity and frequency of distinct alloreactive CD4+ and CD8+ T cell populations in HLA-mismatched responder-stimulator pairs. Our findings indicate that the alloimmune repertoire is highly specific for a given pair of individuals, that most alloreactive clones circulate at low frequencies, and that a high proportion of TCRs is likely able to recognize alloantigens.
Susan DeWolf, Boris Grinshpun, Thomas Savage, Sai Ping Lau, Aleksandar Obradovic, Brittany Shonts, Suxiao Yang, Heather Morris, Julien Zuber, Robert Winchester, Megan Sykes, Yufeng Shen
Acute myeloid leukemia (AML) patients with NPM1 mutations demonstrate a superior response to standard chemotherapy treatment. Our previous work has shown that these favorable outcomes are linked to the cytoplasmic relocalization and inactivation of FOXM1 driven by mutated NPM1. Here, we went on to confirm the important role of FOXM1 in increased chemoresistance in AML. A multiinstitution retrospective study was conducted to link FOXM1 expression to clinical outcomes in AML. We establish nuclear FOXM1 as an independent clinical predictor of chemotherapeutic resistance in intermediate-risk AML in a multivariate analysis incorporating standard clinicopathologic risk factors. Using colony assays, we show a dramatic decrease in colony size and numbers in AML cell lines with knockdown of FOXM1, suggesting an important role for FOXM1 in the clonogenic activity of AML cells. In order to further prove a potential role for FOXM1 in AML chemoresistance, we induced an FLT3-ITD–driven myeloid neoplasm in a FOXM1-overexpressing transgenic mouse model and demonstrated significantly higher residual disease after standard chemotherapy. This suggests that constitutive overexpression of FOXM1 in this model induces chemoresistance. Finally, we performed proof-of-principle experiments using a currently approved proteasome inhibitor, ixazomib, to target FOXM1 and demonstrated a therapeutic response in AML patient samples and animal models of AML that correlates with the suppression of FOXM1 and its transcriptional targets. Addition of low doses of ixazomib increases sensitization of AML cells to chemotherapy backbone drugs cytarabine and the hypomethylator 5-azacitidine. Our results underscore the importance of FOXM1 in AML progression and treatment, and they suggest that targeting it may have therapeutic benefit in combination with standard AML therapies.
Irum Khan, Marianna Halasi, Anand Patel, Rachael Schultz, Nandini Kalakota, Yi-Hua Chen, Nathan Aardsma, Li Liu, John D. Crispino, Nadim Mahmud, Olga Frankfurt, Andrei L. Gartel
Innate DNA repair mechanisms play a critical role in protecting skin keratinocytes from UV mutagenesis and skin cancer development. We hypothesized that individuals who develop frequent skin cancers may harbor germline defects in DNA repair genes and have increased predisposition to internal malignancies. We enrolled 61 patients with unusually frequent basal cell carcinoma (BCC) development, seen at Stanford Hospital and Clinics from January 2005 until December 2015, for germline analysis of 29 DNA repair genes. In parallel, a case-control retrospective review was performed to interrogate the association of malignancies with frequent BCC development in a large US medical insurance claims database (Truven), which included 13,264 individuals with 6 or more BCCs from 2007 to 2011. 19.7% of the frequent BCC cohort harbored pathogenic mutations in DNA repair genes: APC, BARD1, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, NBN, and PALB2. Individuals with 6 or more BCCs had an increased risk of other malignancies, with a 3.5-fold increase in the frequent BCC cohort and a 3.2-fold increase in the Truven database. Individuals who developed frequent BCCs have an increased prevalence of germline mutations in DNA repair genes and increased malignancy risk. Our data implicate frequent BCC development as an external marker of inherited cancer risk.
Hyunje G. Cho, Karen Y. Kuo, Shufeng Li, Irene Bailey, Sumaira Aasi, Anne Lynn S. Chang, Anthony E. Oro, Jean Y. Tang, Kavita Y. Sarin
Aldosterone synthase inhibitors (ASIs) should alleviate obesity-related cardiovascular and renal problems resulting partly from aldosterone excess, but their clinical use may have limitations. To improve knowledge for the use of ASIs, we investigated physiology in aldosterone synthase–knockout (ASKO) mice. On regular chow diet (CD), ASKO mice ate more and weighed less than WT mice, largely because they hyperventilated to eliminate acid as CO2. Replacing CD with high-fat diet (HFD) lessened the respiratory burden in ASKO mice, as did 12- to 15-hour fasting. The latter eliminated the genotype differences in respiratory workload and energy expenditure (EE). Thus, aldosterone deficiency burdened the organism more when the animals ate carbohydrate-rich chow than when they ate a HFD. Chronic HFD exposure further promoted hyperinsulinemia in ASKO mice that contributed to visceral fat accumulation accompanied by reduced lipolysis, thermogenic reprogramming, and the absence of weight-gain-related EE increases. Intracerebroventricular aldosterone supplementation in ASKO mice attenuated the HFD-induced hyperinsulinemia, but did not affect EE, suggesting that the presence of aldosterone increased the body’s energetic efficiency, thus counteracting the EE-increasing effect of low insulin. ASIs may therefore cause acid-overload-induced respiratory burden and promote obesity. Their use in patients with preexisting renal and cardiopulmonary diseases might be contraindicated.
Wan-Hui Liao, Claudia Suendermann, Andrea Eva Steuer, Gustavo Pacheco Lopez, Alex Odermatt, Nourdine Faresse, Maciej Henneberg, Wolfgang Langhans
The neuropathological effects of phenylketonuria (PKU) stem from the inability of the body to metabolize excess phenylalanine (Phe), resulting in accumulation of Phe in the blood and brain. Since the kidney normally reabsorbs circulating amino acids with high efficiency, we hypothesized that preventing the renal uptake of Phe might provide a disposal pathway that could lower systemic Phe levels. SLC6A19 is a neutral amino acid transporter responsible for absorption of the majority of free Phe in the small intestine and reuptake of Phe by renal proximal tubule cells. Transgenic KO mice lacking SLC6A19 have elevated levels of Phe and other amino acids in their urine but are otherwise healthy. Here, we crossed the Pahenu2 mouse model of PKU with the Slc6a19-KO mouse. These mutant/KO mice exhibited abundant excretion of Phe in the urine and an approximately 70% decrease in plasma Phe levels. Importantly, brain Phe levels were decreased by 50%, and the levels of key neurotransmitters were increased in the mutant/KO mice. In addition, a deficit in spatial working memory and markers of neuropathology were corrected. Finally, treatment of Pahenu2 mice with Slc6a19 antisense oligonucleotides lowered Phe levels. The results suggest that inhibition of SLC6A19 may represent a novel approach for the treatment of PKU and related aminoacidopathies.
Adam M. Belanger, Malgorzata Przybylska, Estelle Gefteas, Matthew Furgerson, Sarah Geller, Alla Kloss, Seng H. Cheng, Yunxiang Zhu, Nelson S. Yew
Site-1 protease (S1P), encoded by MBTPS1, is a serine protease in the Golgi. S1P regulates lipogenesis, endoplasmic reticulum (ER) function, and lysosome biogenesis in mice and in cultured cells. However, how S1P differentially regulates these diverse functions in humans has been unclear. In addition, no human disease with S1P deficiency has been identified. Here, we report a pediatric patient with an amorphic and a severely hypomorphic mutation in MBTPS1. The unique combination of these mutations results in a frequency of functional MBTPS1 transcripts of approximately 1%, a finding that is associated with skeletal dysplasia and elevated blood lysosomal enzymes. We found that the residually expressed S1P is sufficient for lipid homeostasis but not for ER and lysosomal functions, especially in chondrocytes. The defective S1P function specifically impairs activation of the ER stress transducer BBF2H7, leading to ER retention of collagen in chondrocytes. S1P deficiency also causes abnormal secretion of lysosomal enzymes due to partial impairment of mannose-6-phosphate–dependent delivery to lysosomes. Collectively, these abnormalities lead to apoptosis of chondrocytes and lysosomal enzyme–mediated degradation of the bone matrix. Correction of an MBTPS1 variant or reduction of ER stress mitigated collagen-trafficking defects. These results define a new congenital human skeletal disorder and, more importantly, reveal that S1P is particularly required for skeletal development in humans. Our findings may also lead to new therapies for other genetic skeletal diseases, as ER dysfunction is common in these disorders.
Yuji Kondo, Jianxin Fu, Hua Wang, Christopher Hoover, J. Michael McDaniel, Richard Steet, Debabrata Patra, Jianhua Song, Laura Pollard, Sara Cathey, Tadayuki Yago, Graham Wiley, Susan Macwana, Joel Guthridge, Samuel McGee, Shibo Li, Courtney Griffin, Koichi Furukawa, Judith A. James, Changgeng Ruan, Rodger P. McEver, Klaas J. Wierenga, Patrick M. Gaffney, Lijun Xia
Cachexia syndrome consists of adipose and muscle loss, often despite normal food intake. We hypothesized that cachexia-associated adipose wasting is driven in part by tumor humoral factors that induce adipocyte lipolysis. We developed an assay to purify secreted factors from a cachexia-inducing colon cancer line that increases lipolysis in adipocytes and identified leukemia inhibitory factor (LIF) by mass spectrometry. Recombinant LIF induced lipolysis in vitro. Peripheral LIF administered to mice caused >50% loss of adipose tissue and >10% reduction in body weight despite only transient hypophagia due to decreasing leptin. LIF-injected mice lacking leptin (ob/ob) resulted in persistent hypophagia and loss of adipose tissue and body weight. LIF’s peripheral role of initiating lipolysis in adipose loss was confirmed in pair-fed ob/ob mouse studies. Our studies demonstrate that (a) LIF is a tumor-secreted factor that promotes cachexia-like adipose loss when administered peripherally, (b) LIF directly induces adipocyte lipolysis, (c) LIF has the ability to sustain adipose and body weight loss through an equal combination of peripheral and central contributions, and (d) LIF’s central effect is counterbalanced by decreased leptin signaling, providing insight into cachexia’s wasting, despite normophagia.
Gurpreet K. Arora, Arun Gupta, Sriram Narayanan, Tong Guo, Puneeth Iyengar, Rodney E. Infante
SLC26A3 (downregulated in adenoma; DRA) is a Cl–/anion exchanger expressed in the luminal membrane of intestinal epithelial cells, where it facilitates electroneutral NaCl absorption. SLC26A3 loss of function in humans or mice causes chloride-losing diarrhea. Here, we identified slc26a3 inhibitors in a screen of 50,000 synthetic small molecules done in Fischer rat thyroid (FRT) cells coexpressing slc26a3 and a genetically encoded halide sensor. Structure-activity relationship studies were done on the most potent inhibitor classes identified in the screen: 4,8-dimethylcoumarins and acetamide-thioimidazoles. The dimethylcoumarin DRAinh-A250 fully and reversibly inhibited slc26a3-mediated Cl– exchange with HCO3–, I–, and thiocyanate (SCN–), with an IC50 of ~0.2 μM. DRAinh-A250 did not inhibit the homologous anion exchangers slc26a4 (pendrin) or slc26a6 (PAT-1), nor did it alter activity of other related proteins or intestinal ion channels. In mice, intraluminal DRAinh-A250 blocked fluid absorption in closed colonic loops but not in jejunal loops, while the NHE3 (SLC9A3) inhibitor tenapanor blocked absorption only in the jejunum. Oral DRAinh-A250 and tenapanor comparably reduced signs of constipation in loperamide-treated mice, with additive effects found on coadministration. DRAinh-A250 was also effective in loperamide-treated cystic fibrosis mice. These studies support a major role of slc26a3 in colonic fluid absorption and suggest the therapeutic utility of SLC26A3 inhibition in constipation.
Peter M. Haggie, Onur Cil, Sujin Lee, Joseph-Anthony Tan, Amber A. Rivera, Puay-Wah Phuan, Alan S. Verkman
No posts were found with this tag.