Premature infants are at high risk for developing bronchopulmonary dysplasia (BPD), characterized by chronic inflammation and inhibition of lung development, which we have recently identified as being modulated by microRNAs (miRNAs) and alterations in the airway microbiome. Exosomes and exosomal miRNAs may regulate cell differentiation and tissue and organ development. We discovered that tracheal aspirates from infants with severe BPD had increased numbers of, but smaller, exosomes compared with term controls. Similarly, bronchoalveolar lavage fluid from hyperoxia-exposed mice (an animal model of BPD) and supernatants from hyperoxia-exposed human bronchial epithelial cells (in vitro model of BPD) had increased exosomes compared with air controls. Next, in a prospective cohort study of tracheal aspirates obtained at birth from extremely preterm infants, utilizing independent discovery and validation cohorts, we identified unbiased exosomal miRNA signatures predictive of severe BPD. The strongest signal of reduced miR-876-3p in BPD-susceptible compared with BPD-resistant infants was confirmed in the animal model and in vitro models of BPD. In addition, based on our recent discovery of increased Proteobacteria in the airway microbiome being associated with BPD, we developed potentially novel in vivo and in vitro models for BPD combining Proteobacterial LPS and hyperoxia exposure. Addition of LPS led to a larger reduction in exosomal miR 876-3p in both hyperoxia and normoxia compared with hyperoxia alone, thus indicating a potential mechanism by which alterations in microbiota can suppress miR 876-3p. Gain of function of miR 876-3p improved the alveolar architecture in the in vivo BPD model, demonstrating a causal link between miR 876-3p and BPD. In summary, we provide evidence for the strong predictive biomarker potential of miR 876-3p in severe BPD. We also provide insights on the pathogenesis of neonatal lung disease, as modulated by hyperoxia and microbial product–induced changes in exosomal miRNA 876-3p, which could be targeted for future therapeutic development.
Charitharth Vivek Lal, Nelida Olave, Colm Travers, Gabriel Rezonzew, Kalsang Dolma, Alexandra Simpson, Brian Halloran, Zubair Aghai, Pragnya Das, Nirmal Sharma, Xin Xu, Kristopher Genschmer, Derek Russell, Tomasz Szul, Nengjun Yi, J. Edwin Blalock, Amit Gaggar, Vineet Bhandari, Namasivayam Ambalavanan
The inverse relationship between gestational age at birth and postviral respiratory morbidity suggests that infants born preterm (PT) may miss a critical developmental window of T cell maturation. Despite a continued increase in younger PT survivors with respiratory complications, we have limited understanding of normal human fetal T cell maturation, how ex utero development in premature infants may interrupt normal T cell development, and whether T cell development has an effect on infant outcomes. In our longitudinal cohort of 157 infants born between 23 and 42 weeks of gestation, we identified differences in T cells present at birth that were dependent on gestational age and differences in postnatal T cell development that predicted respiratory outcome at 1 year of age. We show that naive CD4+ T cells shift from a CD31–TNF-α+ bias in mid gestation to a CD31+IL-8+ predominance by term gestation. Former PT infants discharged with CD31+IL8+CD4+ T cells below a range similar to that of full-term born infants were at an over 3.5-fold higher risk for respiratory complications after NICU discharge. This study is the first to our knowledge to identify a pattern of normal functional T cell development in later gestation and to associate abnormal T cell development with health outcomes in infants.
Kristin M. Scheible, Jason Emo, Nathan Laniewski, Andrea M. Baran, Derick R. Peterson, Jeanne Holden-Wiltse, Sanjukta Bandyopadhyay, Andrew G. Straw, Heidie Huyck, John M. Ashton, Kelly Schooping Tripi, Karan Arul, Elizabeth Werner, Tanya Scalise, Deanna Maffett, Mary Caserta, Rita M. Ryan, Anne Marie Reynolds, Clement L. Ren, David J. Topham, Thomas J. Mariani, Gloria S. Pryhuber
CHD7, an ATP-dependent chromatin remodeler, is disrupted in CHARGE syndrome, an autosomal dominant disorder characterized by variably penetrant abnormalities in craniofacial, cardiac, and nervous system tissues. The inner ear is uniquely sensitive to CHD7 levels and is the most commonly affected organ in individuals with CHARGE. Interestingly, upregulation or downregulation of retinoic acid (RA) signaling during embryogenesis also leads to developmental defects similar to those in CHARGE syndrome, suggesting that CHD7 and RA may have common target genes or signaling pathways. Here, we tested three separate potential mechanisms for CHD7 and RA interaction: (a) direct binding of CHD7 with RA receptors, (b) regulation of CHD7 levels by RA, and (c) CHD7 binding and regulation of RA-related genes. We show that CHD7 directly regulates expression of Aldh1a3, the gene encoding the RA synthetic enzyme ALDH1A3 and that loss of Aldh1a3 partially rescues Chd7 mutant mouse inner ear defects. Together, these studies indicate that ALDH1A3 acts with CHD7 in a common genetic pathway to regulate inner ear development, providing insights into how CHD7 and RA regulate gene expression and morphogenesis in the developing embryo.
Hui Yao, Sophie F. Hill, Jennifer M. Skidmore, Ethan D. Sperry, Donald L. Swiderski, Gilson J. Sanchez, Cynthia F. Bartels, Yehoash Raphael, Peter C. Scacheri, Shigeki Iwase, Donna M. Martin
The adrenal cortex undergoes remodeling during fetal and postnatal life. How zona reticularis emerges in the postnatal gland to support adrenarche, a process whereby higher primates increase prepubertal androgen secretion, is unknown. Using cell-fate mapping and gene deletion studies in mice, we show that activation of PKA has no effect on the fetal cortex, while it accelerates regeneration of the adult cortex, triggers zona fasciculata differentiation that is subsequently converted into a functional reticularis-like zone, and drives hypersecretion syndromes. Remarkably, PKA effects are influenced by sex. Indeed, testicular androgens increase WNT signaling that antagonizes PKA, leading to slower adrenocortical cell turnover and delayed phenotype whereas gonadectomy sensitizes males to hypercorticism and reticularis-like formation. Thus, reticularis results from ultimate centripetal conversion of adult cortex under the combined effects of PKA and cell turnover that dictate organ size. We show that PKA-induced progenitor recruitment is sexually dimorphic and may provide a paradigm for overrepresentation of women in adrenal diseases.
Typhanie Dumontet, Isabelle Sahut-Barnola, Amandine Septier, Nathanaëlle Montanier, Ingrid Plotton, Florence Roucher-Boulez, Véronique Ducros, Anne-Marie Lefrançois-Martinez, Jean-Christophe Pointud, Mohamad Zubair, Ken-Ichirou Morohashi, David T. Breault, Pierre Val, Antoine Martinez
Incomplete penetrance of congenital heart defects (CHDs) was observed in a mouse model. We hypothesized that the contribution of a major genetic locus modulates the manifestation of the CHDs. After genome-wide linkage mapping, fine mapping, and high-throughput targeted sequencing, a recessive frameshift mutation of the heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) gene was confirmed (Hnrnpa1ct). Hnrnpa1 was expressed in both the first heart field (FHF) and second heart field (SHF) at the cardiac crescent stage but was only maintained in SHF progenitors after heart tube formation. Hnrnpa1ct/ct homozygous mutants displayed complete CHD penetrance, including truncated and incomplete looped heart tube at E9.5, ventricular septal defect (VSD) and persistent truncus arteriosus (PTA) at E13.5, and VSD and double outlet right ventricle at P0. Impaired development of the dorsal mesocardium and sinoatrial node progenitors was also observed. Loss of Hnrnpa1 expression leads to dysregulation of cardiac transcription networks and multiple signaling pathways, including BMP, FGF, and Notch in the SHF. Finally, two rare heterozygous mutations of HNRNPA1 were detected in human CHDs. These findings suggest a role of Hnrnpa1 in embryonic heart development in mice and humans.
Zhe Yu, Paul L.F. Tang, Jing Wang, Suying Bao, Joseph T. Shieh, Alan W.L. Leung, Zhao Zhang, Fei Gao, Sandra Y.Y. Wong, Andy L.C. Hui, Yuan Gao, Nelson Dung, Zhi-Gang Zhang, Yanhui Fan, Xueya Zhou, Yalun Zhang, Dana S.M. Wong, Pak C. Sham, Abid Azhar, Pui-Yan Kwok, Patrick P.L. Tam, Qizhou Lian, Kathryn S.E. Cheah, Binbin Wang, You-Qiang Song
Vertebrates possess 2 proteins with vitamin K oxidoreductase (VKOR) activity: VKORC1, whose vitamin K reduction supports vitamin K–dependent (VKD) protein carboxylation, and VKORC1-like 1 (VKORC1L1), whose function is unknown. VKD proteins include liver-derived coagulation factors, and hemorrhaging and lethality were previously observed in mice lacking either VKORC1 or the γ-glutamyl carboxylase (GGCX) that modifies VKD proteins. Vkorc1–/– mice survived longer (1 week) than Ggcx–/– mice (midembryogenesis or birth), and we assessed whether VKORC1L1 could account for this difference. We found that Vkorc1–/–;Vkorc1l1–/– mice died at birth with severe hemorrhaging, indicating that VKORC1L1 supports carboxylation during the pre- and perinatal periods. Additional studies showed that only VKORC1 sustains hemostasis beyond P7. VKORC1 expression and VKOR activity increased during late embryogenesis and following birth, while VKORC1L1 expression was unchanged. At P0, most (>99%) VKOR activity was due to VKORC1. Prothrombin mRNA, protein, and carboxylation also increased during this period, as did mRNA levels of coagulation factors encoding genes F7, F9, and F10. VKORC1L1 levels in Vkorc1–/– mouse liver may therefore be insufficient for supporting carboxylation beyond day 7. In support of this conclusion, VKORC1L1 overexpression in liver rescued carboxylation and hemostasis in adult Vkorc1–/– mice. These findings establish that VKORC1L1 supports VKD protein carboxylation in vivo.
Julie Lacombe, Mark A. Rishavy, Kathleen L. Berkner, Mathieu Ferron
Kit receptor tyrosine kinase is highly expressed in the developing mammalian brain, yet little is known about its contribution to neural cell development and function. Here we introduced a brain-specific conditional Kit loss-of-function mutation in mice and observed severe hypoplasia of the central nervous system. This was accompanied by an increase in apoptotic cell death in the early embryonic brain and the gradual loss of the self-renewal capacity of neuronal stem/precursor cells. A single copy of the brain-specific conditional Kit loss-of-function allele resulted in the observed phenotype, including impaired in vitro differentiation of neural cells from Kit-haploinsufficient embryonic stem (ES) cells. Our findings demonstrate that Kit signaling is required for the early development of neural cells. This potentially novel Kit-haploinsufficient lethal phenotype may represent an embryonic lethal phenomenon previously unobserved because of its dominantly acting nature.
Hitomi Aoki, Akira Hara, Takahiro Kunisada
Organ-specific patterns of myeloid cells may contribute tissue-specific growth and/or regenerative potentials. The perinatal stage of pancreas development marks a time characterized by maximal proliferation of pancreatic islets, ensuring the maintenance of glucose homeostasis throughout life. Ontogenically distinct CX3CR1+ and CCR2+ macrophage populations have been reported in the adult pancreas, but their functional contribution to islet cell growth at birth remains unknown. Here, we uncovered a temporally restricted requirement for CCR2+ myeloid cells in the perinatal proliferation of the endocrine pancreatic epithelium. CCR2+ macrophages are transiently enriched over CX3CR1+ subsets in the neonatal pancreas through both local expansion and recruitment of immature precursors. Using CCR2-specific depletion models, we show that loss of this myeloid population leads to a striking reduction in β cell proliferation, dysfunctional islet phenotypes, and glucose intolerance in newborns. Replenishment of pancreatic CCR2+ myeloid compartments by adoptive transfer rescues these defects. Gene profiling identifies pancreatic CCR2+ myeloid cells as a prominent source of IGF2, which contributes to IGF1R-mediated islet proliferation. These findings uncover proproliferative functions of CCR2+ myeloid subsets and identify myeloid-dependent regulation of IGF signaling as a local cue supporting pancreatic proliferation.
Kristin Mussar, Stephanie Pardike, Tobias M. Hohl, Gary Hardiman, Vincenzo Cirulli, Laura Crisa
β Cells are formed in embryonic life by differentiation of endocrine progenitors and expand by replication during neonatal life, followed by transition into functional maturity. In this study, we addressed the potential contribution of neuropeptide Y (NPY) in pancreatic β cell development and maturation. We show that NPY expression is restricted from the progenitor populations during pancreatic development and marks functionally immature β cells in fetal and neonatal mice and humans. NPY expression is epigenetically downregulated in β cells upon maturation. Neonatal β cells that express NPY are more replicative, and knockdown of NPY expression in neonatal mouse islets reduces replication and enhances insulin secretion in response to high glucose. These data show that NPY expression likely promotes replication and contributes to impaired glucose responsiveness in neonatal β cells. We show that NPY expression reemerges in β cells in mice fed with high-fat diet as well as in diabetes in mice and humans, establishing a potential new mechanism to explain impaired β cell maturity in diabetes. Together, these studies highlight the contribution of NPY in the regulation of β cell differentiation and have potential applications for β cell supplementation for diabetes therapy.
Pope Rodnoi, Mohan Rajkumar, Abu Saleh Md Moin, Senta K. Georgia, Alexandra E. Butler, Sangeeta Dhawan
A fundamental challenge to our understanding of brown adipose tissue (BAT) is the lack of an animal model that faithfully represents human BAT. Such a model is essential for direct assessment of the function and therapeutic potential of BAT depots in humans. In human adults, most of the thermoactive BAT depots are located in the supraclavicular region of the neck, while mouse studies focus on depots located in the interscapular region of the torso. We recently discovered BAT depots that are located in a region analogous to that of human supraclavicular BAT (scBAT). Here, we report that the mouse scBAT depot has morphological characteristics of classical BAT, possesses the potential for high thermogenic activity, and expresses a gene signature that is similar to that of human scBAT. Taken together, our studies reveal a mouse BAT depot that represents human BAT and provides a unique tool for developing new translatable approaches for utilizing human scBAT.
Qianxing Mo, Jordan Salley, Tony Roshan, Lisa A. Baer, Francis J. May, Eric J. Jaehnig, Adam C. Lehnig, Xin Guo, Qiang Tong, Alli M. Nuotio-Antar, Farnaz Shamsi, Yu-Hua Tseng, Kristin I. Stanford, Miao-Hsueh Chen
No posts were found with this tag.