Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation

J Swift, IL Ivanovska, A Buxboim, T Harada… - Science, 2013 - science.org
J Swift, IL Ivanovska, A Buxboim, T Harada, PCDP Dingal, J Pinter, JD Pajerowski…
Science, 2013science.org
Introduction Tissues can be soft like brain, bone marrow, and fat, which bear little
mechanical stress, or stiff like muscle, cartilage, and bone, which sustain high levels of
stress. Systematic relationships between tissue stiffness, protein abundance, and differential
gene expression are unclear. Recent studies of stem cells cultured on matrices of different
elasticity, E, have suggested that differentiation is mechanosensitive, but the molecular
mechanisms involved in particular tissues remain elusive. Tissue micromechanics correlate …
Introduction
Tissues can be soft like brain, bone marrow, and fat, which bear little mechanical stress, or stiff like muscle, cartilage, and bone, which sustain high levels of stress. Systematic relationships between tissue stiffness, protein abundance, and differential gene expression are unclear. Recent studies of stem cells cultured on matrices of different elasticity, E, have suggested that differentiation is mechanosensitive, but the molecular mechanisms involved in particular tissues remain elusive.
Tissue micromechanics correlate with abundance of collagens and nuclear lamins, which influence cell differentiation. (Left) Collagen and lamin-A levels scale with E, consistent with matching tissue stress to nuclear mechanics. (Right) Matrix stiffness in tissue culture increases cell tension and stabilizes lamin-A, regulating its own transcription and that of stress fiber genes, enhancing differentiation. RA, retinoic acid, i.e., vitamin A; RARG, YAP1, and SRF, transcription factors.
Methods
We developed quantitative mass spectrometry algorithms to measure protein abundance, stoichiometry, conformation, and interactions within tissues and cells in relation to stiffness of tissues and extracellular matrix. Manipulations of lamin-A levels with small interfering RNA, overexpression, and retinoic acid or antagonist were applied to stem cells cultured on different matrices to assess lamin-A’s role in mechanosensitive differentiation. To characterize molecular mechanisms, promoter analyses, transcriptional profiling, and localization of transcription factors were complemented by measurements of nuclear mechanics and by modeling of the core gene circuit.
Results
Proteomic profiling of multiple adult solid tissues showed that widely varied levels of collagens in extracellular matrix and of lamin-A in nuclei followed power-law scaling versus E. Scaling for mechanoresponsive lamin-A conformed to predictions from polymer physics, whereas lamin-B’s varied weakly. Tumor xenograft studies further demonstrated that matrix determined tissue E, whereas lamin-A levels responded to changes in E. In tissue culture cells, both lamin-A conformation and expression were mechanosensitive, with phosphorylation and turnover of lamin-A correlating inversely with matrix E. Lamin-A knockdown enhanced mesenchymal stem cell differentiation on soft matrix that favored a low-stress, fat phenotype. Lamin-A overexpression or transcriptional induction with a retinoic acid (RA) antagonist enhanced differentiation on stiff matrix toward a high-stress, bone phenotype. Downstream of matrix stiffness, the RA pathway regulated lamin-A transcription, but feedback by lamin-A regulated RA receptor (RARG) translocation into nuclei. High lamin-A levels physically impeded nuclear remodeling under stress but also coregulated other key factors. These factors included both serum response factor (SRF), which promoted expression of stress fiber–associated proteins involved in differentiation, and a Hippo pathway factor (YAP1) involved in growth.
Discussion
The characteristic stress in normal tissue favors collagen accumulation and a characteristic stiffness that cells transduce through nuclear lamin-A to enhance tissue-specific differentiation. Tension-inhibited turnover of rope-like filaments of lamin-A provides sufficient mechanochemical control of a core gene circuit to explain the steady-state scaling of lamin-A with E. High lamin-A physically stabilizes the nucleus against stress and thereby stabilizes the nuclear lamina and chromatin, with implications for epigenetic stabilization and limiting of DNA breaks. Moreover, lamin-A levels directly or indirectly regulate many proteins involved in tissue-specific gene …
AAAS