Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs

HK Kim, F Falugi, L Thomer, DM Missiakas… - MBio, 2015 - Am Soc Microbiol
HK Kim, F Falugi, L Thomer, DM Missiakas, O Schneewind
MBio, 2015Am Soc Microbiol
Staphylococcus aureus infection is not associated with the development of protective
immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that
binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the
staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was
examined for protein A cross-linking. High VH3 binding activity occurred with human and
guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no …
Abstract
Staphylococcus aureus infection is not associated with the development of protective immunity, and disease relapses occur frequently. We hypothesize that protein A, a factor that binds immunoglobulin Fcγ and cross-links VH3 clan B cell receptors (IgM), is the staphylococcal determinant for host immune suppression. To test this, vertebrate IgM was examined for protein A cross-linking. High VH3 binding activity occurred with human and guinea immunoglobulin, whereas mouse and rabbit immunoglobulins displayed little and no binding, respectively. Establishing a guinea pig model of S. aureus bloodstream infection, we show that protein A functions as a virulence determinant and suppresses host B cell responses. Immunization with SpAKKAA, which cannot bind immunoglobulin, elicits neutralizing antibodies that enable guinea pigs to develop protective immunity.
IMPORTANCE  Staphylococcus aureus is the leading cause of soft tissue and bloodstream infections; however, a vaccine with clinical efficacy is not available. Using mice to model staphylococcal infection, earlier work identified protective antigens; however, corresponding human clinical trials did not reach their endpoints. We show that B cell receptor (IgM) cross-linking by protein A is an important immune evasion strategy of S. aureus that can be monitored in a guinea pig model of bloodstream infection. Further, immunization with nontoxigenic protein A enables infected guinea pigs to elicit antibody responses that are protective against S. aureus. Thus, the guinea pig model may support preclinical development of staphylococcal vaccines.
American Society for Microbiology