Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation

TW Cullen, WB Schofield, NA Barry, EE Putnam… - Science, 2015 - science.org
TW Cullen, WB Schofield, NA Barry, EE Putnam, EA Rundell, MS Trent, PH Degnan
Science, 2015science.org
Resilience to host inflammation and other perturbations is a fundamental property of gut
microbial communities, yet the underlying mechanisms are not well understood. We have
found that human gut microbes from all dominant phyla are resistant to high levels of
inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for
lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP
resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to …
Resilience to host inflammation and other perturbations is a fundamental property of gut microbial communities, yet the underlying mechanisms are not well understood. We have found that human gut microbes from all dominant phyla are resistant to high levels of inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to remove a single phosphate group from their LPS were displaced from the microbiota during inflammation triggered by pathogen infection. These findings establish a mechanism that determines the stability of prominent members of a healthy microbiota during perturbation.
AAAS