[HTML][HTML] Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies

JR Mazzulli, YH Xu, Y Sun, AL Knight, PJ McLean… - Cell, 2011 - cell.com
JR Mazzulli, YH Xu, Y Sun, AL Knight, PJ McLean, GA Caldwell, E Sidransky, GA Grabowski…
Cell, 2011cell.com
Summary Parkinson's disease (PD), an adult neurodegenerative disorder, has been
clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the
mechanistic connection is not known. Here, we show that functional loss of GD-linked
glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises
lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in
neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the …
Summary
Parkinson's disease (PD), an adult neurodegenerative disorder, has been clinically linked to the lysosomal storage disorder Gaucher disease (GD), but the mechanistic connection is not known. Here, we show that functional loss of GD-linked glucocerebrosidase (GCase) in primary cultures or human iPS neurons compromises lysosomal protein degradation, causes accumulation of α-synuclein (α-syn), and results in neurotoxicity through aggregation-dependent mechanisms. Glucosylceramide (GlcCer), the GCase substrate, directly influenced amyloid formation of purified α-syn by stabilizing soluble oligomeric intermediates. We further demonstrate that α-syn inhibits the lysosomal activity of normal GCase in neurons and idiopathic PD brain, suggesting that GCase depletion contributes to the pathogenesis of sporadic synucleinopathies. These findings suggest that the bidirectional effect of α-syn and GCase forms a positive feedback loop that may lead to a self-propagating disease. Therefore, improved targeting of GCase to lysosomes may represent a specific therapeutic approach for PD and other synucleinopathies.
cell.com