[HTML][HTML] Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress

M Ikeda, T Ide, T Fujino, S Arai, K Saku, T Kakino… - PloS one, 2015 - journals.plos.org
M Ikeda, T Ide, T Fujino, S Arai, K Saku, T Kakino, H Tyynismaa, T Yamasaki, K Yamada…
PloS one, 2015journals.plos.org
Background Mitochondrial DNA (mtDNA) copy number decreases in animal and human
heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we
investigated the cardioprotective function of increased mtDNA copy number resulting from
the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle
helicase in volume overload (VO)-induced HF. Methods and Results Two strains of
transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle …
Background
Mitochondrial DNA (mtDNA) copy number decreases in animal and human heart failure (HF), yet its role in cardiomyocytes remains to be elucidated. Thus, we investigated the cardioprotective function of increased mtDNA copy number resulting from the overexpression of human transcription factor A of mitochondria (TFAM) or Twinkle helicase in volume overload (VO)-induced HF.
Methods and Results
Two strains of transgenic (TG) mice, one overexpressing TFAM and the other overexpressing Twinkle helicase, exhibit an approximately 2-fold equivalent increase in mtDNA copy number in heart. These TG mice display similar attenuations in eccentric hypertrophy and improved cardiac function compared to wild-type (WT) mice without any deterioration of mitochondrial enzymatic activities in response to VO, which was accompanied by a reduction in matrix-metalloproteinase (MMP) activity and reactive oxygen species after 8 weeks of VO. Moreover, acute VO-induced MMP-2 and MMP-9 upregulation was also suppressed at 24 h in both TG mice. In isolated rat cardiomyocytes, mitochondrial reactive oxygen species (mitoROS) upregulated MMP-2 and MMP-9 expression, and human TFAM (hTFAM) overexpression suppressed mitoROS and their upregulation. Additionally, mitoROS were equally suppressed in H9c2 rat cardiomyoblasts that overexpress hTFAM or rat Twinkle, both of which exhibit increased mtDNA copy number. Furthermore, mitoROS and mitochondrial protein oxidation from both TG mice were suppressed compared to WT mice.
Conclusions
The overexpression of TFAM or Twinkle results in increased mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress. Our findings suggest that increasing mtDNA copy number could be a useful therapeutic strategy to target mitoROS in HF.
PLOS