An in vivo protein landscape of the mouse DCT during high dietary K+ or low dietary Na+ intake

MLA Kortenoeven, L Cheng, Q Wu… - American Journal of …, 2021 - journals.physiology.org
American Journal of Physiology-Renal Physiology, 2021journals.physiology.org
The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling
blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or
hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in
mediating the differential responses to aldosterone. To determine the alterations in the DCT
that may be responsible for these effects, male mice with green fluorescent protein
expression specifically in the DCT were maintained on diets containing low NaCl …
The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in mediating the differential responses to aldosterone. To determine the alterations in the DCT that may be responsible for these effects, male mice with green fluorescent protein expression specifically in the DCT were maintained on diets containing low NaCl (hypovolemic state) or high potassium citrate (hyperkalemic state) for 4 days, and DCT cells were isolated using fluorescence-activated cell sorting. This pure population of DCT cells was subjected to analysis by liquid chromatography-coupled tandem mass spectrometry. Over 3,000 proteins were identified in the DCT, creating the first proteome of the mouse DCT. Of the identified proteins, 210 proteins were altered in abundance following a low-NaCl diet and 625 proteins following the high-K+ diet. Many of these changes were not detectable by analyzing whole kidney samples from the same animals. When comparing responses to high-K+ versus low-Na+ diets, protein translation, chaperone-mediated protein folding, and protein ubiquitylation were likely to be significantly altered in the DCT subsequent to a high-K+ diet. In conclusion, this study defines an in vivo protein landscape of the DCT in male mice following either a low-NaCl or a high-K+ diet and acts as an essential resource for the kidney research community.
NEW & NOTEWORTHY The mineralocorticoid aldosterone, essential for maintaining body K+ and Na+ balance, has different effects if secreted due to hypovolemia or hyperkalemia. Here, we used proteomics to profile kidney distal convoluted tubule (DCT) cells isolated by a novel FACS approach from mice fed a low-Na+ diet (mimicking hypovolemia) or a high-K+ diet (mimicking hyperkalemia). The study provides the first in-depth proteome of the mouse DCT and insights into how it is physiologically regulated.
American Physiological Society