[HTML][HTML] Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding

Y Han, G Xia, D Srisai, F Meng, Y He, Y Ran… - Nature …, 2021 - nature.com
Y Han, G Xia, D Srisai, F Meng, Y He, Y Ran, Y He, M Farias, G Hoang, I Tóth, MO Dietrich
Nature communications, 2021nature.com
Contrasting to the established role of the hypothalamic agouti-related protein (AgRP)
neurons in feeding regulation, the neural circuit and signaling mechanisms by which they
control energy expenditure remains unclear. Here, we report that energy expenditure is
regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons
within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4
receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic …
Abstract
Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.
nature.com