VRK2A is an A-type lamin–dependent nuclear envelope kinase that phosphorylates BAF

KC Birendra, DG May, BV Benson, DI Kim… - Molecular Biology of …, 2017 - Am Soc Cell Biol
KC Birendra, DG May, BV Benson, DI Kim, WG Shivega, MH Ali, RS Faustino, AR Campos
Molecular Biology of the Cell, 2017Am Soc Cell Biol
The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and
mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We
used proximity biotinylation to uncover new constituents of the inner nuclear membrane
(INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif.
These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the
INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type …
The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Am Soc Cell Biol