[HTML][HTML] The mitochondrial origin of postischemic arrhythmias

FG Akar, MA Aon, GF Tomaselli… - The Journal of clinical …, 2005 - Am Soc Clin Investig
FG Akar, MA Aon, GF Tomaselli, B O'Rourke
The Journal of clinical investigation, 2005Am Soc Clin Investig
Recovery of the mitochondrial inner membrane potential (ΔΨm) is a key determinant of
postischemic functional recovery of the heart. Mitochondrial ROS-induced ROS release
causes the collapse of ΔΨm and the destabilization of the action potential (AP) through a
mechanism involving a mitochondrial inner membrane anion channel (IMAC) modulated by
the mitochondrial benzodiazepine receptor (mBzR). Here, we test the hypothesis that this
mechanism contributes to spatiotemporal heterogeneity of ΔΨm during ischemia …
Recovery of the mitochondrial inner membrane potential (ΔΨm) is a key determinant of postischemic functional recovery of the heart. Mitochondrial ROS-induced ROS release causes the collapse of ΔΨm and the destabilization of the action potential (AP) through a mechanism involving a mitochondrial inner membrane anion channel (IMAC) modulated by the mitochondrial benzodiazepine receptor (mBzR). Here, we test the hypothesis that this mechanism contributes to spatiotemporal heterogeneity of ΔΨm during ischemia-reperfusion (IR), thereby promoting abnormal electrical activation and arrhythmias in the whole heart. High-resolution optical AP mapping was performed in perfused guinea pig hearts subjected to 30 minutes of global ischemia followed by reperfusion. Typical electrophysiological responses, including progressive AP shortening followed by membrane inexcitablity in ischemia and ventricular fibrillation upon reperfusion, were observed in control hearts. These responses were reduced or eliminated by treatment with the mBzR antagonist 4′-chlorodiazepam (4′-Cl-DZP), which blocks depolarization of ΔΨm. When applied throughout the IR protocol, 4′-Cl-DZP blunted AP shortening and prevented reperfusion arrhythmias. Inhibition of ventricular fibrillation was also achieved by bolus infusion of 4′-Cl-DZP just before reperfusion. Conversely, treatment with an agonist of the mBzR that promotes ΔΨm depolarization exacerbated IR-induced electrophysiological changes and failed to prevent arrhythmias. The effects of these compounds were consistent with their actions on IMAC and ΔΨm. These findings directly link instability of ΔΨm to the heterogeneous electrophysiological substrate of the postischemic heart and highlight the mitochondrial membrane as a new therapeutic target for arrhythmia prevention in ischemic heart disease.
The Journal of Clinical Investigation