[HTML][HTML] Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder

P Huppke, S Weissbach, JA Church, R Schnur… - Nature …, 2017 - nature.com
P Huppke, S Weissbach, JA Church, R Schnur, M Krusen, S Dreha-Kulaczewski…
Nature communications, 2017nature.com
Transcription factor NRF2, encoded by NFE2L2, is the master regulator of defense against
stress in mammalian cells. Somatic mutations of NFE2L2 leading to NRF2 accumulation
promote cell survival and drug resistance in cancer cells. Here we show that the same
mutations as inborn de novo mutations cause an early onset multisystem disorder with
failure to thrive, immunodeficiency and neurological symptoms. NRF2 accumulation leads to
widespread misregulation of gene expression and an imbalance in cytosolic redox balance …
Abstract
Transcription factor NRF2, encoded by NFE2L2, is the master regulator of defense against stress in mammalian cells. Somatic mutations of NFE2L2 leading to NRF2 accumulation promote cell survival and drug resistance in cancer cells. Here we show that the same mutations as inborn de novo mutations cause an early onset multisystem disorder with failure to thrive, immunodeficiency and neurological symptoms. NRF2 accumulation leads to widespread misregulation of gene expression and an imbalance in cytosolic redox balance. The unique combination of white matter lesions, hypohomocysteinaemia and increased G-6-P-dehydrogenase activity will facilitate early diagnosis and therapeutic intervention of this novel disorder.
nature.com