[HTML][HTML] PRMT5 inhibition disrupts splicing and stemness in glioblastoma

P Sachamitr, JC Ho, FE Ciamponi, W Ba-Alawi… - Nature …, 2021 - nature.com
P Sachamitr, JC Ho, FE Ciamponi, W Ba-Alawi, FJ Coutinho, P Guilhamon, MM Kushida…
Nature communications, 2021nature.com
Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor
growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5
(PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting
inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of
PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with
the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes …
Abstract
Glioblastoma (GBM) is a deadly cancer in which cancer stem cells (CSCs) sustain tumor growth and contribute to therapeutic resistance. Protein arginine methyltransferase 5 (PRMT5) has recently emerged as a promising target in GBM. Using two orthogonal-acting inhibitors of PRMT5 (GSK591 or LLY-283), we show that pharmacological inhibition of PRMT5 suppresses the growth of a cohort of 46 patient-derived GBM stem cell cultures, with the proneural subtype showing greater sensitivity. We show that PRMT5 inhibition causes widespread disruption of splicing across the transcriptome, particularly affecting cell cycle gene products. We identify a GBM splicing signature that correlates with the degree of response to PRMT5 inhibition. Importantly, we demonstrate that LLY-283 is brain-penetrant and significantly prolongs the survival of mice with orthotopic patient-derived xenografts. Collectively, our findings provide a rationale for the clinical development of brain penetrant PRMT5 inhibitors as treatment for GBM.
nature.com