Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation

JL Karnell, FG Karnell, GL Stephens… - The Journal of …, 2011 - journals.aai.org
JL Karnell, FG Karnell, GL Stephens, B Rajan, C Morehouse, Y Li, B Swerdlow, M Wilson…
The Journal of Immunology, 2011journals.aai.org
Production of pathogenic Abs contributes to disease progression in many autoimmune
disorders. The immunosuppressant agent mycophenolic acid (MPA) has shown clinical
efficacy for patients with autoimmunity. The goal of these studies was to elucidate the
mechanisms of action of MPA on B cells isolated from healthy individuals and autoimmune
patients. In this study, we show that MPA significantly inhibited both proliferation and
differentiation of primary human B cells stimulated under various conditions. Importantly …
Abstract
Production of pathogenic Abs contributes to disease progression in many autoimmune disorders. The immunosuppressant agent mycophenolic acid (MPA) has shown clinical efficacy for patients with autoimmunity. The goal of these studies was to elucidate the mechanisms of action of MPA on B cells isolated from healthy individuals and autoimmune patients. In this study, we show that MPA significantly inhibited both proliferation and differentiation of primary human B cells stimulated under various conditions. Importantly, MPA did not globally suppress B cell responsiveness or simply induce cell death, but rather selectively inhibited early activation events and arrested cells in the G0/G1 phase of the cell cycle. Furthermore, MPA blocked expansion of both naive and memory B cells and prevented plasma cell (PC) differentiation and Ab production from healthy controls and individuals with rheumatoid arthritis. Finally, whereas MPA potently suppressed Ig secretion from activated primary B cells, terminally differentiated PCs were not susceptible to inhibition by MPA. The target of MPA, IMPDH2, was found to be downregulated in PCs, likely explaining the resistance of these cells to MPA. These results suggest that MPA provides benefit in settings of autoimmunity by directly preventing activation and PC differentiation of B cells; however, MPA is unlikely to impact autoantibody production by preexisting, long-lived PCs.
journals.aai.org