Oncogenic D816V-KIT signaling in mast cells causes persistent IL-6 production

A Tobío, G Bandara, DA Morris, DK Kim… - …, 2020 - pmc.ncbi.nlm.nih.gov
A Tobío, G Bandara, DA Morris, DK Kim, MP O'Connell, HD Komarow, MC Carter, D Smrz…
Haematologica, 2020pmc.ncbi.nlm.nih.gov
Persistent dysregulation of IL-6 production and signaling have been implicated in the
pathology of various cancers. In systemic mastocytosis, increased serum levels of IL-6
associate with disease severity and progression, although the mechanisms involved are not
well understood. Since systemic mastocytosis often associates with the presence in
hematopoietic cells of a somatic gain-of-function variant in KIT, D816V-KIT, we examined its
potential role in IL-6 upregulation. Bone marrow mononuclear cultures from patients with …
Persistent dysregulation of IL-6 production and signaling have been implicated in the pathology of various cancers. In systemic mastocytosis, increased serum levels of IL-6 associate with disease severity and progression, although the mechanisms involved are not well understood. Since systemic mastocytosis often associates with the presence in hematopoietic cells of a somatic gain-of-function variant in KIT, D816V-KIT, we examined its potential role in IL-6 upregulation. Bone marrow mononuclear cultures from patients with greater D816V allelic burden released increased amounts of IL-6 which correlated with the percentage of mast cells in the cultures. Intracellular IL-6 staining by flow cytometry and immunofluorescence was primarily associated with mast cells and suggested a higher percentage of IL-6 positive mast cells in patients with higher D816V allelic burden. Furthermore, mast cell lines expressing D816V-KIT, but not those expressing normal KIT or other KIT variants, produced constitutively high IL-6 amounts at the message and protein levels. We further demonstrate that aberrant KIT activity and signaling are critical for the induction of IL-6 and involve STAT5 and PI3K pathways but not STAT3 or STAT4. Activation of STAT5A and STAT5B downstream of D816V-KIT was mediated by JAK2 but also by MEK/ERK1/2, which not only promoted STAT5 phosphorylation but also its long-term transcription. Our study thus supports a role for mast cells and D816V-KIT activity in IL-6 dysregulation in mastocytosis and provides insights into the intracellular mechanisms. The findings contribute to a better understanding of the physiopathology of mastocytosis and suggest the importance of therapeutic targeting of these pathways.
pmc.ncbi.nlm.nih.gov