Risks of common complications in deep brain stimulation surgery: management and avoidance

AJ Fenoy, RK Simpson - Journal of neurosurgery, 2014 - thejns.org
AJ Fenoy, RK Simpson
Journal of neurosurgery, 2014thejns.org
Object Deep brain stimulation (DBS) surgery is increasingly prominent in the treatment of
various disorders refractory to medication. Despite the procedure's efficacy, the community
at large continues to be hesitant about presumed associated risks. The main object of this
study was to assess the incidence of various surgical complications occurring both during
and after DBS device implantation in a large population of patients with movement disorders
in an effort to better quantify patient risk, define management plans, and develop methods …
Object
Deep brain stimulation (DBS) surgery is increasingly prominent in the treatment of various disorders refractory to medication. Despite the procedure's efficacy, the community at large continues to be hesitant about presumed associated risks. The main object of this study was to assess the incidence of various surgical complications occurring both during and after DBS device implantation in a large population of patients with movement disorders in an effort to better quantify patient risk, define management plans, and develop methods for risk avoidance. A second aim was to corroborate the low procedural complication risk of DBS reported by others, which in light of the procedure's efficacy is needed to promote its widespread acceptance.
Methods
All patients who had undergone new DBS device implantation surgery between 2002 and 2010 by a single surgeon were entered into a database after being verified by cross-referencing manufacturer implantation records. All surgical records and charts were reviewed to identify intraoperative, perioperative, and long-term surgical complications, including any characteristics predictive of an adverse event.
Results
Seven hundred twenty-eight patients received 1333 new DBS electrodes and 1218 new internal pulse generators (IPGs) in a total of 1356 stereotactic procedures for the treatment of movement disorders. Seventy-eight percent of the patients had staged lead and IPG implantations. Of the 728 patients, 452 suffered from medically refractory Parkinson disease; in the other patients, essential tremor (144), dystonia (64), mixed disease (30), and other hyperkinetic movement disorders (38) were diagnosed. Severe intraoperative adverse events included vasovagal response in 6 patients (0.8%), hypotension in 2 (0.3%), and seizure in 2 (0.3%). Postoperative imaging confirmed asymptomatic intracerebral hemorrhage (ICH) in 4 patients (0.5%), asymptomatic intraventricular hemorrhage in 25 (3.4%), symptomatic ICH in 8 (1.1%), and ischemic infarction in 3 (0.4%), associated with hemiparesis and/or decreased consciousness in 13 (1.7%). Long-term complications of DBS device implantation not requiring additional surgery included hardware discomfort in 8 patients (1.1%) and loss of desired effect in 10 (1.4%). Hardware-related complications requiring surgical revision included wound infections in 13 patients (1.7%), lead malposition and/or migration in 13 (1.7%), component fracture in 10 (1.4%), component malfunction in 4 (0.5%), and loss of effect in 19 (2.6%).
Conclusions
The authors confirmed that the overall risk of both procedure- and hardware-related adverse events is acceptably low. They offer advice on how to avoid the most common complications.
thejns.org