Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin

X Zhou, L Sun, F Bastos de Oliveira, X Qi… - Journal of Cell …, 2015 - rupress.org
X Zhou, L Sun, F Bastos de Oliveira, X Qi, WJ Brown, MB Smolka, Y Sun, F Hu
Journal of Cell Biology, 2015rupress.org
Mutations in the progranulin (PGRN) gene have been linked to two distinct
neurodegenerative diseases, frontotemporal lobar degeneration (FTLD) and neuronal
ceroid lipofuscinosis (NCL). Accumulating evidence suggests a critical role of PGRN in
lysosomes. However, how PGRN is trafficked to lysosomes is still not clear. Here we report a
novel pathway for lysosomal delivery of PGRN. We found that prosaposin (PSAP) interacts
with PGRN and facilitates its lysosomal targeting in both biosynthetic and endocytic …
Mutations in the progranulin (PGRN) gene have been linked to two distinct neurodegenerative diseases, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests a critical role of PGRN in lysosomes. However, how PGRN is trafficked to lysosomes is still not clear. Here we report a novel pathway for lysosomal delivery of PGRN. We found that prosaposin (PSAP) interacts with PGRN and facilitates its lysosomal targeting in both biosynthetic and endocytic pathways via the cation-independent mannose 6-phosphate receptor and low density lipoprotein receptor-related protein 1. PSAP deficiency in mice leads to severe PGRN trafficking defects and a drastic increase in serum PGRN levels. We further showed that this PSAP pathway is independent of, but complementary to, the previously identified PGRN lysosomal trafficking mediated by sortilin. Collectively, our results provide new understanding on PGRN trafficking and shed light on the molecular mechanisms behind FTLD and NCL caused by PGRN mutations.
rupress.org