Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture

J Gagnon, Y Anini - Endocrinology, 2012 - academic.oup.com
Endocrinology, 2012academic.oup.com
Ghrelin is a peptide hormone primarily produced in the previously unidentified X/A
endocrine cells of the stomach. Extensive studies have focused on the effects of ghrelin on
growth hormone release and appetite regulation. However, the mechanisms regulating
ghrelin secretion are less understood. In the present study, we developed a primary culture
of newborn rat stomach cells to investigate the mechanisms regulating ghrelin synthesis and
secretion. We demonstrated that this cell preparation secretes ghrelin in a regulated manner …
Ghrelin is a peptide hormone primarily produced in the previously unidentified X/A endocrine cells of the stomach. Extensive studies have focused on the effects of ghrelin on growth hormone release and appetite regulation. However, the mechanisms regulating ghrelin secretion are less understood. In the present study, we developed a primary culture of newborn rat stomach cells to investigate the mechanisms regulating ghrelin synthesis and secretion. We demonstrated that this cell preparation secretes ghrelin in a regulated manner through the increase of cAMP, intracellular calcium, and activation of protein kinase C. Norepinephrine (NE) (0.1–10 μm) stimulated ghrelin secretion through the β1-adrenergic receptor via increased cAMP and protein kinase A activity, whereas acetylcholine had no effect. Because circulating ghrelin levels were previously shown to be inversely correlated with insulin levels, we investigated the effect of insulin on ghrelin secretion. We first demonstrated that ghrelin cells express the insulin receptor α- and β-subunits. Next, we determined that insulin (1–10 nm) inhibited both basal and NE-stimulated ghrelin secretion, caused an increase in phosphorylated serine-threonine kinase (AKT) and a reduction in intracellular cAMP, but did not alter proghrelin mRNA levels. The inhibitory effect of insulin was blocked by inhibiting phospho-inositol-3 kinase and AKT but not MAPK. Higher dose insulin (100 nm) did not suppress ghrelin secretion, which prompted the investigation of cellular insulin resistance by pretreating the cells with 100 nm insulin for 24 h. This caused a reduction in insulin receptor expression and prevented the insulin-mediated AKT activation and the suppression of ghrelin secretion with no impact on NE-stimulated ghrelin secretion. Our findings highlight the role of the sympathetic nervous system, insulin, and insulin resistance in the regulation of ghrelin secretion.
Oxford University Press