Cardiomyocyte NF-κB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure

T Hamid, SZ Guo, JR Kingery, X Xiang… - Cardiovascular …, 2011 - academic.oup.com
T Hamid, SZ Guo, JR Kingery, X Xiang, B Dawn, SD Prabhu
Cardiovascular research, 2011academic.oup.com
Aims The role of nuclear factor (NF)-κB in heart failure (HF) is not well defined. We sought to
determine whether myocyte-localized NF-κB p65 activation in HF exacerbates post-
infarction remodelling and promotes maladaptive endoplasmic reticulum (ER) stress.
Methods and results Non-transgenic (NTg) and transgenic (Tg) mice with myocyte-restricted
overexpression of a phosphorylation-resistant inhibitor of κBα (IκBαS32A, S36A) underwent
coronary ligation (to induce HF) or sham operation. Over 4 weeks, the remote myocardium of …
Aims
The role of nuclear factor (NF)-κB in heart failure (HF) is not well defined. We sought to determine whether myocyte-localized NF-κB p65 activation in HF exacerbates post-infarction remodelling and promotes maladaptive endoplasmic reticulum (ER) stress.
Methods and results
Non-transgenic (NTg) and transgenic (Tg) mice with myocyte-restricted overexpression of a phosphorylation-resistant inhibitor of κBα (IκBαS32A,S36A) underwent coronary ligation (to induce HF) or sham operation. Over 4 weeks, the remote myocardium of ligated hearts exhibited robust NF-κB activation that was almost exclusively p65 beyond 24 h. Compared with sham at 4 weeks, NTg HF hearts were dilated and dysfunctional, and exhibited hypertrophy, fibrosis, up-regulation of inflammatory cytokines, increased apoptosis, down-regulation of ER protein chaperones, and up-regulation of the ER stress-activated pro-apoptotic factor CHOP. Compared with NTg HF, Tg-IκBαS32A,S36A HF mice exhibited: (i) improved survival, chamber remodelling, systolic function, and pulmonary congestion, (ii) markedly diminished NF-κB p65 activation, cytokine expression, and fibrosis, and (iii) a three-fold reduction in apoptosis. Moreover, Tg-IκBαS32A,S36A HF hearts exhibited maintained expression of ER chaperones and CHOP when compared with sham. In cardiomyocytes, NF-κB activation was required for ER stress-mediated apoptosis, whereas abrogation of myocyte NF-κB shifted the ER stress response to one of adaptation and survival.
Conclusion
Persistent myocyte NF-κB p65 activation in HF exacerbates cardiac remodelling by imparting pro-inflammatory, pro-fibrotic, and pro-apoptotic effects. p65 modulation of cell death in HF may occur in part from NF-κB-mediated transformation of the ER stress response from one of adaptation to one of apoptosis.
Oxford University Press