[HTML][HTML] Heterozygous ABCC8 mutations are a cause of MODY

P Bowman, SE Flanagan, EL Edghill, A Damhuis… - Diabetologia, 2012 - Springer
P Bowman, SE Flanagan, EL Edghill, A Damhuis, MH Shepherd, R Paisey, AT Hattersley
Diabetologia, 2012Springer
Aims/hypothesis The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of
the pancreatic beta cell ATP-sensitive potassium (K ATP) channel. Inactivating mutations
cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal
diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with
sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but
patients referred for genetic testing with clinical features of these types of diabetes do not …
Aims/hypothesis
The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (KATP) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy.
Methods
We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m2, no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes.
Results
ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation.
Conclusions/interpretation
ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.
Springer