IND-2, a pyrimido [1 ″, 2 ″: 1, 5] pyrazolo [3, 4-b] quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells

C Karthikeyan, C Lee, J Moore, R Mittal… - Bioorganic & medicinal …, 2015 - Elsevier
C Karthikeyan, C Lee, J Moore, R Mittal, EA Suswam, KL Abbott, SR Pondugula, U Manne
Bioorganic & medicinal chemistry, 2015Elsevier
Naturally occurring condensed quinolines have anticancer properties. In efforts to find active
analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido [1 ″,
2 ″: 1, 5] pyrazolo [3, 4-b] quinoline framework (IND series). The compounds were
evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145),
breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2)
cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse …
Abstract
Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer.
Elsevier