5-Hydroxytryptamine–mediated neurotransmission modulates spontaneous and vagal-evoked glutamate release in the nucleus of the solitary tract effect of uptake …

PS Hosford, SW Mifflin, AG Ramage - Journal of Pharmacology and …, 2014 - ASPET
Journal of Pharmacology and Experimental Therapeutics, 2014ASPET
The effect of blockade of either 5-hydroxytryptamine (5-HT)/serotonin transporter (SERT)
with citalopram or the organic cation transporter 3 (OCT3)/plasma membrane monoamine
transporter (PMAT) with decynium-22 (D-22) on spontaneous and evoked release of 5-HT in
the nucleus tractus solitarius (NTS) was investigated in rat brainstem slices treated with
gabazine. 5-HT release was measured indirectly by changes in the frequency and amplitude
of glutamatergic miniature excitatory postsynaptic currents (mEPSCs)[in the presence of …
The effect of blockade of either 5-hydroxytryptamine (5-HT)/serotonin transporter (SERT) with citalopram or the organic cation transporter 3 (OCT3)/plasma membrane monoamine transporter (PMAT) with decynium-22 (D-22) on spontaneous and evoked release of 5-HT in the nucleus tractus solitarius (NTS) was investigated in rat brainstem slices treated with gabazine. 5-HT release was measured indirectly by changes in the frequency and amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) [in the presence of tetrodotoxin (TTX)] and evoked EPSCs. Blockade of 5-HT3 receptors with granisetron reduced, whereas the 5-HT3 agonist phenylbiguanide increased, the frequency of mEPSCs. 5-HT decreased mEPSC frequency at low concentrations and increased frequency at high concentrations. This inhibition was blocked by the 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY-100635), which was ineffective on its own, whereas the excitation was reversed by granisetron. The addition of citalopram or D-22 caused inhibition, which was prevented by 5-HT1A blockade. Thus, in the NTS, the spontaneous release of 5-HT is able to activate 5-HT3 receptors, but not 5-HT1A receptors, as the release in their vicinity is removed by uptake. The ineffectiveness of corticosterone suggests that the low-affinity, high-capacity transporter is PMAT, not OCT3. For evoked 5-HT release, only D-22 caused an increase in the amplitude of EPSCs, with a decrease in the paired pulse ratio, and increased the number of spontaneous EPSCs after 20-Hz stimulation. Thus, for the evoked release of 5-HT, the low-affinity, high-capacity transporter PMAT, but not 5-HT transporter (5-HTT)/SERT, is important in the regulation of changes in 5-HT extracellular concentration.
ASPET