[HTML][HTML] Alcohol-related changes in the intestinal microbiome influence neutrophil infiltration, inflammation and steatosis in early alcoholic hepatitis in mice

PP Lowe, B Gyongyosi, A Satishchandran… - PloS one, 2017 - journals.plos.org
PP Lowe, B Gyongyosi, A Satishchandran, A Iracheta-Vellve, A Ambade, K Kodys…
PloS one, 2017journals.plos.org
Background Alcohol-induced intestinal dysbiosis disrupts homeostatic gut-liver axis function
and is essential in the development of alcoholic liver disease. Here, we investigate changes
in enteric microbiome composition in a model of early alcoholic steatohepatitis and dissect
the pathogenic role of intestinal microbes in alcohol-induced liver pathology. Materials and
methods Wild type mice received a 10-day diet that was either 5% alcohol-containing or an
isocaloric control diet plus a single binge. 16S rDNA sequencing defined the bacterial …
Background
Alcohol-induced intestinal dysbiosis disrupts homeostatic gut-liver axis function and is essential in the development of alcoholic liver disease. Here, we investigate changes in enteric microbiome composition in a model of early alcoholic steatohepatitis and dissect the pathogenic role of intestinal microbes in alcohol-induced liver pathology.
Materials and methods
Wild type mice received a 10-day diet that was either 5% alcohol-containing or an isocaloric control diet plus a single binge. 16S rDNA sequencing defined the bacterial communities in the cecum of alcohol- and pair-fed animals. Some mice were treated with an antibiotic cocktail prior to and throughout alcohol feeding. Liver neutrophils, cytokines and steatosis were evaluated.
Results
Acute-on-chronic alcohol administration induced shifts in various bacterial phyla in the cecum, including increased Actinobacteria and a reduction in Verrucomicrobia driven entirely by a reduction in the genus Akkermansia. Antibiotic treatment reduced the gut bacterial load and circulating bacterial wall component lipopolysaccharide (LPS). We found that bacterial load suppression prevented alcohol-related increases in the number of myeloperoxidase- (MPO) positive infiltrating neutrophils in the liver. Expression of liver mRNA tumor necrosis factor alpha (Tnfα), C-X-C motif chemokine ligand 1 (Cxcl1) and circulating protein monocyte chemoattractant protein-1 (MCP-1) were also reduced in antibiotic-treated alcohol-fed mice. Alcohol-induced hepatic steatosis measured by Oil-Red O staining was significantly reduced in antibiotic treated mice. Genes regulating lipid production and storage were also altered by alcohol and antibiotic treatment. Interestingly, antibiotic treatment did not protect from alcohol-induced increases in serum aminotransferases (ALT/AST).
Conclusions
Our data indicate that acute-on-chronic alcohol feeding alters the microflora at multiple taxonomic levels and identifies loss of Akkermansia as an early marker of alcohol-induced gut dysbiosis. We conclude that gut microbes influence liver inflammation, neutrophil infiltration and liver steatosis following alcohol consumption and these data further emphasize the role of the gut-liver axis in early alcoholic liver disease.
PLOS