[HTML][HTML] Estrogen receptor profiles across tissues from male and female Rattus norvegicus

DD Hutson, R Gurrala, BO Ogola… - Biology of sex …, 2019 - Springer
Biology of sex Differences, 2019Springer
Background Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three
identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor
(GPER). Understanding the relative contribution of each receptor to estrogenic signaling
may elucidate the disparate effects of this sex hormone across tissues, and recent
developments in PCR technology allow absolute quantification and direct comparison of
multiple targets. We hypothesized that this approach would reveal tissue-and sex-specific …
Background
Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA.
Methods
ESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney, and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats.
Results
GPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to 83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female 206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER (5.49 vs. 47.5 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the predominant transcript in the brain with similarly low levels of ESR1 and ESR2. CYP19A1 was detected at very low levels except for reproductive tissues and the hippocampus.
Conclusion
While the data indicates a lack of sex differences in most tissues, significant differences were found in the range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal therapies that elicit beneficial effects in specific tissues.
Springer