The HDAC inhibitor SAHA does not rescue CFTR membrane expression in Cystic Fibrosis

A Bergougnoux, A Petit, L Knabe, E Bribes… - The international journal …, 2017 - Elsevier
A Bergougnoux, A Petit, L Knabe, E Bribes, R Chiron, A De Sario, M Claustres, N Molinari
The international journal of biochemistry & cell biology, 2017Elsevier
The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of
therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.
Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance
Regulator gene carrying the p. Phe508del mutation) requires taking into account their
overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone
deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via …
Abstract
The development of suitable Cystic Fibrosis (CF) models for preclinical bench tests of therapeutic candidates is challenging. Indeed, the validation of molecules to rescue the p.Phe508del-CFTR channel (encoded by the Cystic Fibrosis Transmembrane conductance Regulator gene carrying the p.Phe508del mutation) requires taking into account their overall effects on the epithelium. Suberoylanilide Hydroxamic Acid (SAHA), a histone deacetylase inhibitor (HDACi), was previously shown to be a CFTR corrector via proteostasis modulation in CFTR-deficient immortalized cells. Here, we tested SAHA effects on goblet cell metaplasia using an ex vivo model based on the air-liquid interface (ALI) culture of differentiated airway epithelial cells obtained by nasal scraping from CF patients and healthy controls. Ex vivo epithelium grew successfully in ALI cultures with significant rise in the expression of CFTR and of markers of airway epithelial differentiation compared to monolayer cell culture. SAHA decreased CFTR transcript and protein levels in CF and non-CF epithelia. Whereas SAHA induced lysine hyperacetylation, it did not change histone modifications at the CFTR promoter. SAHA reduced MUC5AC and MUC5 B expression and inhibited goblet epithelial cell differentiation. Similar effects were obtained in CF and non-CF epithelia. All the effects were fully reversible within five days from SAHA withdrawal. We conclude that, ex vivo, SAHA modulate the structure of airway epithelia without specific effect on CFTR gene and protein suggesting that HDACi cannot be useful for CF treatment.
Elsevier