Surfactant Protein A2 (SP-A2) Variants Expressed in CHO Cells Stimulate Phagocytosis of Pseudomonas aeruginosa More than Do SP-A1 Variants

AN Mikerov, G Wang, TM Umstead… - Infection and …, 2007 - Am Soc Microbiol
AN Mikerov, G Wang, TM Umstead, M Zacharatos, NJ Thomas, DS Phelps, J Floros
Infection and immunity, 2007Am Soc Microbiol
ABSTRACT Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas
aeruginosa. Two functional genes, SP-A1 and SP-A2, encode human SP-A. As we showed
before, baculovirus-mediated insect cell-expressed SP-A2 enhances the association of P.
aeruginosa with rat alveolar macrophages (rAMs) more than does SP-A1. However, true
phagocytosis (internalization) was not shown, and insect cell derived proteins lack or are
defective in certain mammalian posttranslational modifications that may be important for SP …
Abstract
Surfactant protein A (SP-A) enhances phagocytosis of Pseudomonas aeruginosa. Two functional genes, SP-A1 and SP-A2, encode human SP-A. As we showed before, baculovirus-mediated insect cell-expressed SP-A2 enhances the association of P. aeruginosa with rat alveolar macrophages (rAMs) more than does SP-A1. However, true phagocytosis (internalization) was not shown, and insect cell derived proteins lack or are defective in certain mammalian posttranslational modifications that may be important for SP-A1 and SP-A2 activity and specificity. Here we used SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A1) allele variants expressed by CHO (Chinese hamster ovary) mammalian cells to study their effect on association and/or internalization of P. aeruginosa by rAMs and/or human AMs (hAMs) and to study if phagocytosis can be modulated differentially and/or more effectively by CHO cell-expressed SP-A variants than by insect-cell expressed SP-A variants. For cell association and internalization assessments, light microscopy and fluorescence-activated cell sorter analyses were used, respectively. We found the following for the first time. (i) SP-A2 variants enhanced phagocytosis (cell association and/or internalization) of P. aeruginosa more than SP-A1 variants did, and the cell association correlated with internalization. (ii) Differences in the activities of SP-A variants were observed in the following order: 1A1>1A0>6A2>6A4. (iii) rAMs, although more active than hAMs, are an appropriate model, as SP-A2 variants exhibited activity higher than that seen for SP-A1 variants with either rAMs or hAMs. (iv) CHO cell-expressed SP-A was considerably more active than insect cell-expressed variants. We conclude that SP-A2 variants stimulate phagocytosis of P. aeruginosa more effectively than SP-A1 variants and that posttranslational modifications positively influence the phagocytic activity of SP-A.
American Society for Microbiology