[HTML][HTML] The dynamic chromatin architecture of the regenerating liver

AW Wang, YJ Wang, AM Zahm, AR Morgan… - Cellular and molecular …, 2020 - Elsevier
Cellular and molecular gastroenterology and hepatology, 2020Elsevier
Background & Aims The adult liver is the main detoxification organ and routinely is exposed
to environmental insults but retains the ability to restore its mass and function upon tissue
damage. However, extensive injury can lead to liver failure, and chronic injury causes
fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of
organ repair in the adult liver is incompletely understood. Methods We isolated nuclei from
quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia …
Background & Aims
The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood.
Methods
We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF).
Results
Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation.
Conclusions
Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.
Elsevier