[HTML][HTML] The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity

TE Chater, Y Goda - Frontiers in cellular neuroscience, 2014 - frontiersin.org
TE Chater, Y Goda
Frontiers in cellular neuroscience, 2014frontiersin.org
In the mammalian central nervous system, excitatory glutamatergic synapses harness
neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the
postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of
synapses in an activity-dependent manner. Changes in their number, subunit composition,
phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify …
In the mammalian central nervous system, excitatory glutamatergic synapses harness neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of synapses in an activity-dependent manner. Changes in their number, subunit composition, phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify synaptic strength and support cellular forms of learning. Furthermore, dysregulation of AMPAR plasticity has been implicated in various pathological states and has important consequences for mental health. Here we focus on the mechanisms that control AMPAR plasticity, drawing particularly from the extensive studies on hippocampal synapses, and highlight recent advances in the field along with considerations for future directions.
Frontiers